Space solar cells with down-conversion quantum dots

Zijian Chen , Yanhua Zhong , Meng Si , Jiayi Wang , Heng Li , Wenhua Li

Optoelectronics Letters ›› 2025, Vol. 21 ›› Issue (7) : 413 -418.

PDF
Optoelectronics Letters ›› 2025, Vol. 21 ›› Issue (7) : 413 -418. DOI: 10.1007/s11801-025-5064-y
Article

Space solar cells with down-conversion quantum dots

Author information +
History +
PDF

Abstract

Quantum dots (QDs) can modulate the solar spectrum through the down-conversion mechanism to better match the spectral response of solar cells. Following previous work, this paper first tested the response of QD solar cells to specific monochromatic light, and found that QDs can effectively improve the photoelectric conversion efficiency (PCE) in the ultraviolet (UV) band by comparison. Then the photoelectric properties of the QD solar cells are tested under the air-mass 1.5 (AM1.5) and air-mass 0 (AM0) spectra. The experimental results show that because the absorption band of QDs is in the UV region, the space solar cells in the AM0 spectrum can obtain better PCE after coating QDs. The research results show the technical route of space solar cells with down-conversion mechanism, and put forward an important direction for the application of space solar photovoltaic (PV) technology, and have a good application prospect.

Cite this article

Download citation ▾
Zijian Chen, Yanhua Zhong, Meng Si, Jiayi Wang, Heng Li, Wenhua Li. Space solar cells with down-conversion quantum dots. Optoelectronics Letters, 2025, 21(7): 413-418 DOI:10.1007/s11801-025-5064-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ChapinD M, FullerC S, PearsonG L. A new silicon p-n junction photocell for converting solar radiation into electrical power[J]. Journal of applied physics, 1954, 25(5): 676-677

[2]

ZhuD, YangG, WangF, et al.. Polarization bidirectional reflection distribution function of solar panelsur-face[J]. Journal of optoelectronics laser, 2023, 34(11): 1193-1200 (in Chinese)

[3]

MecherikunnelA T, RichmondJ Spectral distribution of solar radiation[R], 1980

[4]

NREL. Best research-cell efficiency chart[EB/OL]. [2025-01-03]. https://www.nrel.gov/pv/cell-efficiency.html.

[5]

LuqueA, MartíA, BettA, et al.. Fullspectrum: a new PV wave making more efficient use of the solar spectrum[J]. Solar energy materials and solar cells, 2005, 87(1–4): 467-479

[6]

HuangX, HanS, HuangW, et al.. Enhancing solar cell efficiency: the search for luminescent materials as spectral converters[J]. Chemical society reviews, 2013, 42(1): 173-201

[7]

WeghR T, DonkerH, OskamK D, et al.. Visible quantum cutting in LiGdF4: Eu3+ through downconversion[J]. Science, 1999, 283(5402): 663-666

[8]

LiuJ, WangK, ZhengW, et al.. Improving spectral response of monocrystalline silicon photovoltaic modules using high efficient luminescent down-shifting Eu3+ complexes[J]. Progress in photovoltaics: research and applications, 2013, 21(4): 668-675

[9]

FengW, LiuJ, YuX. Efficiency enhancement of mono-Si solar cell with CdO nanotip antireflection and down-conversion layer[J]. RSC advance, 2014, 4(93): 51683-51687

[10]

LiJ, ChenL, HaoZ, et al.. Efficient near-infrared downconversion and energy transfer mechanism of Ce3+/Yb3+ codoped calcium scandate phosphor[J]. Inorganic chemistry, 2015, 54(10): 4806-4810

[11]

NakamuraY, YoshikiI, TetsuhikoI. Bandgap-tuned CuInS2/ZnS core/shell quantum dots for a luminescent downshifting layer in a crystalline silicon solar module[J]. ACS applied nano materials, 2020, 3(4): 3417-3426

[12]

SamuelA K, DileepK R, JayaramanM, et al.. Enhanced power conversion efficiency using a Ce3+:SrF2 down-shifting nanophosphor-based photo-electrode for dye-sensitized solar cell applications[J]. ACS applied energy materials, 2021, 4(7): 7112-7121

[13]

PeiL, GongX K, LiL, et al.. 3D surface microstructure of silicon modified by QDs to improve solar cell performance through down-conversion and anti-reflection mechanism[J]. Colloids and surfaces A: physicochemical and engineering aspects, 2023, 675: 132015

[14]

HuangJ Y, WangY, TaoF, et al.. TiO2/ZnO double-layer broadband antireflective and down-shifting coatings for solar applications[J]. Ceramics international, 2023, 49(7): 11091-11100

[15]

WANG S, WANG S, YANG X, et al. Improved performance of quantum dot solar cells by type-II InAs/GaAsSb structure with moderate Sb composition[J]. Heliyon, 2023, 9(9).

[16]

DanladiE, KashifM, OuladsmaneM, et al.. Modeling and simulation of >19% highly efficient PbS colloidal quantum dot solar cell: a step towards unleashing the prospect of quantum dot absorber[J]. Optik, 2023, 291: 171325

[17]

ShrivastavN, MadanJ, MohammedM K A, et al.. CsPbI3-Perovskite quantum dot solar cells: unlocking their potential through improved absorber layer characteristics and reduced defects[J]. Materials research express, 2023, 10(7): 075506

[18]

DanH K, TungH T, KhanhD V, et al.. Bibliometric analysis of research trends on quantum-dot-sensitized solar cells over two decades[J]. Energies, 2023, 16(15): 5734

[19]

ChenZ, ZhongY, MaZ, et al.. Optimization design of surface optical characteristics of space solar cells based on transfer matrix method[J]. Japanese journal of applied physics, 2024, 63(3): 035501

[20]

Photovoltaic devices-Part 3: measurement principles for terrestrial photovoltaic (PV) solar devices with reference spectral irradiance data: IEC 60904-3[S/OL]. [2025-01-03]. https://webstore.ansi.org/standards/iec/iec-60904ed1989-1003322.

RIGHTS & PERMISSIONS

Tianjin University of Technology

AI Summary AI Mindmap
PDF

197

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/