Research on resonant ring-modified photonic crystal line-defect slow-light waveguide

Qianzhen Liu , Chengju Ma , Yan Li

Optoelectronics Letters ›› 2025, Vol. 21 ›› Issue (7) : 419 -426.

PDF
Optoelectronics Letters ›› 2025, Vol. 21 ›› Issue (7) : 419 -426. DOI: 10.1007/s11801-025-4105-x
Article

Research on resonant ring-modified photonic crystal line-defect slow-light waveguide

Author information +
History +
PDF

Abstract

This paper presents a photonic crystal (PhC) line-defect slow-light waveguide modified by resonant rings. We introduce resonant rings into the line defect, constructing a slow-light waveguide with high normalized delay bandwidth product (NDBP) and low group velocity dispersion (GVD). We simulate, analyze, and optimize the structural parameters of this slow-light waveguide using the finite difference time domain (FDTD) method, theoretically achieving a maximum group index of 3.7, maximum bandwidth of 15.6 nm, and maximum NDBP of 0.441 6 for slow-light effect. The resonant ring-modified PhC slow-light waveguide designed in this paper exhibits GVD lower than the order of 10−20 s2/m over a normalized frequency range from 0.355 4 to 0.417 5. This study is expected to provide theoretical references for the study of slow-light buffering devices based on PhCs with high NDBP values.

Cite this article

Download citation ▾
Qianzhen Liu, Chengju Ma, Yan Li. Research on resonant ring-modified photonic crystal line-defect slow-light waveguide. Optoelectronics Letters, 2025, 21(7): 419-426 DOI:10.1007/s11801-025-4105-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

KumarA, TianY J, NavaratnaN, et al.. Slow light topological photonics with counter-propagating waves and its active control on a chip[J]. Nature communications, 2024, 15(1): 926

[2]

DossM P, JeyachitraR K. Quantum slow light annular photonic crystal ring resonator for optical network applications[J]. Optical and quantum electronics, 2024, 56(5): 741

[3]

LiY C, PanY Z, ChenF, et al.. Sensor and slow light based on plasmon-induced transparency in carbon nanotube rectangular split-ring resonator metamaterials[J]. Optical and quantum electronics, 2024, 56(6): 1003

[4]

FuM C, LiaoJ L, ShaoZ Z, et al.. Finely engineered slow light photonic crystal waveguides for efficient wideband wavelength-independent higher-order temporal solitons[J]. Applied optics, 2016, 55(14): 3740-3745

[5]

ZhangY, MaC J, JinJ S, et al.. All-optical tunable slow light based on metal/semiconductor hybrid EIT metamaterial[J]. Journal of electronic materials, 2023, 52(1): 593-601

[6]

KumariS, KumarV, ReddyS G, et al.. Tunable ultraslow light propagation in ruby[J]. Optics communications, 2020, 437: 125913

[7]

ZhouB J, MaJ G, WangJ, et al.. Ultrafast group-velocity control via cascaded quadratic nonlinearities in optical parametric amplification[J]. Optics letters, 2018, 43(15): 3790-3793

[8]

XuM Y, PengL, BaiY H, et al.. Slow-light-enhanced Brillouin scattering with integrated Bragg grating [J]. Optics letters, 2024, 49(8): 2177-2180

[9]

UranusH P. Modeling of Mach-Zehnder interferometric sensors employing ring-resonator circuits for slow-light enhancement[J]. IEEE photonics journal, 2023, 15(6): 6802209

[10]

BouscalA, KemicheM, MahapatraS, et al.. Systematic design of a robust half-W1 photonic crystal waveguide for interfacing slow light and trapped cold atoms[J]. New journal of physics, 2024, 26(2): 023026

[11]

HociniA, MaacheM, KhedroucheD. Modeling and simulation of optimized photonic crystal waveguide for slow-light enhancement[J]. Journal of physics conference series, 2020, 1492(1): 012005

[12]

ZhuK T, YangH X, DuH. Slow light tuning in annular slotted photonic crystal waveguide with incoming polymer[J]. Journal of physics: conference series, 2022, 2109(1): 012008

[13]

PavanV D R, RoyS. Exploring the slow light features of lattice shifted twist induced photonic crystal waveguides with ring like holes[J]. IETE journal of research, 2023, 69(10): 6787-6793

[14]

ZhangY D, WangL P, FanH L, et al.. Ultra-slow light with high normalized delay-bandwidth product and refractive-index sensing in photonic crystal coupled-cavity waveguide[J]. Optics communications, 2022, 523: 128721

[15]

PatilM C, ArreguiG, MechlenborgM, et al.. Observation of slow light in glide-symmetric photonic-crystal waveguides[J]. Optics express, 2022, 30(8): 12565-12575

[16]

FerrandoA, SilvestreE, AndresP, et al.. Designing the properties of dispersion-flattened photonic crystal fibers[J]. Optics express, 2001, 9(13): 687-697

[17]

ZhaiY, TianH P, JiY F. Slow light property improvement and optical buffer capability in ring-shape-hole photonic crystal waveguide[J]. Journal of lightwave technology, 2011, 29(20): 3083-3090

[18]

BabaT. Slow light in photonic crystals[J]. Nature photonics, 2008, 2(8): 465-473

[19]

JannesariR, GrilleT, StockerG, et al.. Design of a narrow band filter based on a photonic crystal cavity for CO2 sensing application[J]. Sensors, 2023, 23(10): 4958

[20]

FrandsenL H, LavrinenkoA V, Fage-PedersenJ, et al.. Photonic crystal waveguides with semi-slow light and tailored dispersion properties[J]. Optics express, 2006, 14(20): 9444-9450

[21]

DaghooghiT, SorooshM, AnsariA K. Low-power all-optical switch based on slow light photonic crystal[J]. Photonic network communications, 2022, 43(3): 177-184

[22]

MaJ, JiangC. Demonstration of ultraslow modes in asymmetric line-defect photonic crystal waveguides[J]. IEEE photonics technology letters, 2008, 20(14): 1237-1239

[23]

WuR, MaY Y, LiL F. Slow light transmission of photonic crystal waveguide with wide bandwidth and large normalized delay bandwidth product[J]. Laser & optoelectronics progress, 2021, 58(7): 0723002 in Chinese)

RIGHTS & PERMISSIONS

Tianjin University of Technology

AI Summary AI Mindmap
PDF

209

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/