Enhanced photoelectrochemical performance of TiO2/Sb2S3 nanorod arrays by annealing in Ar ambience

Meirong Sui , Xiuquan Gu

Optoelectronics Letters ›› 2025, Vol. 21 ›› Issue (7) : 385 -390.

PDF
Optoelectronics Letters ›› 2025, Vol. 21 ›› Issue (7) : 385 -390. DOI: 10.1007/s11801-025-4039-3
Article

Enhanced photoelectrochemical performance of TiO2/Sb2S3 nanorod arrays by annealing in Ar ambience

Author information +
History +
PDF

Abstract

In this work, the TiO2/Sb2S3 nanorod arrays (NRAs) were synthesized through a two-stage hydrothermal route for photoelectrochemical (PEC) water splitting. The effect of annealing treatment in Ar ambience on the PEC activity of TiO2/Sb2S3 composite sample was investigated by electrochemical impedance analysis, including Nyquist and Mott-Schottky (M-S) plots. It was demonstrated that vacuum annealing could crystallize Sb2S3 component and change its color from red to black, leading to an increment of photocurrent density from 1.9 A/m2 to 4.25 A/m2 at 0 V versus saturated calomel electrode (VSCE). The enhanced PEC performance was mainly attributed to the improved visible light absorption. Moreover, annealing treatment facilitated retarding the electron-hole recombination occurred at the solid/liquid interfaces. Our work might provide a novel strategy for enhancing the PEC performance of a semiconductor electrode.

Cite this article

Download citation ▾
Meirong Sui, Xiuquan Gu. Enhanced photoelectrochemical performance of TiO2/Sb2S3 nanorod arrays by annealing in Ar ambience. Optoelectronics Letters, 2025, 21(7): 385-390 DOI:10.1007/s11801-025-4039-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LiuJ L, LuoZ Y, MaoX C, et al.. Recent advances in self-supported semiconductor heterojunction nanoarrays as efficient photoanodes for photoelectrochemical water splitting[J]. Small, 2022, 18(48): 2204553

[2]

TangR, ZhouS J, ZhangZ Y, et al.. Engineering nanostructure-interface of photoanode materials toward photoelectrochemical water oxidation[J]. Advanced materials, 2021, 33(17): 2005389

[3]

WeiS, XiaX W, BiS, et al.. Metal-insulator-semiconductor photoelectrodes for enhanced photoelectrochemical water splitting[J]. Chemical society reviews, 2024, 53(13): 6860-6916

[4]

JenningsJ R, GhicovA, PeterL M, et al.. Dye sensitized solar cells based on oriented TiO2 nanotube arrays: transport, trapping, and transfer of electrons[J]. Journal of the American chemical society, 2008, 130(40): 13364-13372

[5]

AlmomaniF, ShawaqfahM, AlkasrawiM. Solar-driven hydrogen production from a water-splitting cycle based on carbon-TiO2 nano-tubes[J]. International journal of hydrogen energy, 2022, 47(5): 3294-3305

[6]

BraiekZ, NaceurJ B, JradF, et al.. Novel synthesis of graphene oxide/In2S3/TiO2 NRs heterojunction photoanode for enhanced photoelectrochemical (PEC) performance[J]. International journal of hydrogen energy, 2022, 47(6): 3655-3666

[7]

ZhangS, GuX Q, ZhaoY L, et al.. Enhanced photoelectrochemical performance of TiO2 nanorod arrays by a 500°C annealing in air: insights into the mechanism[J]. Journal of electronic materials, 2016, 45(1): 648-653

[8]

SuiM R, GuX Q, ShiM L, et al.. Improved photoelectrochemical performance by forming a ZnO/ZnS core/shell nanorod array[J]. Optoelectronics letters, 2019, 15(4): 241-244

[9]

TongM H, WangT M, LinS W, et al.. Ultra-thin carbon doped TiO2 nanotube arrays for enhanced visible-light photoelectrochemical water splitting[J]. Applied surface science, 2023, 623: 156980

[10]

ChacŎnJ A, Cerdán-PasaránA, ZaraúaI, et al.. Anodized TiO2 nanotubes sensitized with selenium doped CdS nanoparticles for solar water splitting[J]. Energies, 2024, 17(7): 1592

[11]

CelebiN, AydinM Y, SoysalF, et al.. Ligand-free fabrication of Au/TiO2 nanostructures for plasmonic hot-electron-driven photocatalysis: photoelectrochemical water splitting and organic-dye degredation[J]. Journal of alloys and compound, 2021, 860: 157908

[12]

HeR, ZhaoY L, GuX Q, et al.. Enhanced visible-light photoelectrochemical activity of TiO2 nanorod arrays decorated by Sb2S3 particles[J]. Journal of materials science: materials in electronics, 2018, 29(7): 5293-5298

[13]

SharmaV, DakshinamurthyA C, PandeyB, et al.. Highly efficient photoelectrochemical ZnO and TiO2 nanorod/Sb2S3 heterostructured photoanodes through one step thermolysis of Sb-MPA complex[J]. Solar energy, 2021, 225: 333-343

[14]

HanF, MaS, LiD, et al.. A simple fabrication of Sb2S3/TiO2 photoanode with long wavelength visible light absorption for efficient photoelectrochemical water oxidation[J]. Nanomaterials, 2022, 12(9): 3444

[15]

ElbakkayM H, El RoubyW M A, Mariño-LŎpezA, et al.. One-pot synthesis of TiO2/Sb2S3/RGO complex multicomponent heterostructures for highly enhanced photoelectrochemical water splitting[J]. International journal of hydrogen energy, 2021, 46(61): 31216-31227

[16]

WuS J, OuK, ZhangW T, et al.. TiO2 nanorod arrays/Ti3C2Tx MXene nanosheet composites with efficient photocatalytic activity[J]. Nanotechnology, 2024, 35(15): 155705

[17]

ZhangJ, LiuZ, LiuZ. Novel WO3/Sb2S3 heterojunction photocatalyst based on WO3 of different morphologies for enhanced efficiency in photoelectrochemical water splitting[J]. ACS applied materials & interfaces, 2016, 8(15): 9684-9691

[18]

FutakoW, KamiyaT, FortmannC M, et al.. The structure of 1.5–2.0 eV band gap amorphous silicon films prepared by chemical annealing[J]. Journal of non-crystalline solids, 2000, 266–269: 630-634 Part 1)

[19]

PrasadU, PrakashJ, GuptaS K, et al.. Enhanced photoelectrochemical water splitting with Er- and W-codoped bismuth vanadate with WO3 heterojunction-based two-dimensional photoelectrode[J]. ACS applied materials & interfaces, 2019, 11(21): 19029-19039

[20]

MaruskaH P, GhoshA K. Photocatalytic decomposition of water at semiconductor electrodes[J]. Solar energy, 1978, 20(6): 443-458

[21]

LeeE J, PyunS II. Analysis of nonlinear Mott-Schottky plots obtained from anodically passivating amorphous and polycrystalline TiO2 films[J]. Journal of applied electrochemistry, 1992, 22(2): 156-160

[22]

PyunS II, KimC H. Determination of donor concentration in anodically passivating polycrystalline TiO2 films from analysis of nonlinear Mott-Schottky plots[J]. International journal of hydrogen energy, 1991, 16(10): 661-664

RIGHTS & PERMISSIONS

Tianjin University of Technology

AI Summary AI Mindmap
PDF

187

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/