Effects of selenization conditions on the microstructure and optoelectronic properties of CZTSSe absorber layers prepared by the sol-gel method

Xin Bai , Yuming Xue , Hongli Dai , Luoxin Wang , Xinfeng Bai , Xiaofeng Hu

Optoelectronics Letters ›› 2025, Vol. 21 ›› Issue (11) : 661 -666.

PDF
Optoelectronics Letters ›› 2025, Vol. 21 ›› Issue (11) : 661 -666. DOI: 10.1007/s11801-025-3168-z
Original Paper
research-article

Effects of selenization conditions on the microstructure and optoelectronic properties of CZTSSe absorber layers prepared by the sol-gel method

Author information +
History +
PDF

Abstract

Cu2ZnSnSSe4 (CZTSSe) thin film solar cells, with adjustable bandgap and rich elemental content, hold promise in next-gen photovoltaics. Crystalline quality is pivotal for efficient light absorption and carrier transport. During the post-selenization process, understanding crystal growth mechanisms, and improving layer quality are essential. We explored the effects of ramp rate and annealing temperature on CZTSSe films, using X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscope (SEM), and ultraviolet-visual spectrophotometry (UV-Vis). The optimal performance occurred at 25.25 °C/min ramp rate and 530 °C annealing. This led to smoother surfaces, higher density, and larger grains. This condition produced a single-layer structure with large grains, no secondary phases, and a 1.14 eV bandgap, making it promising for photovoltaic applications. The study has highlighted the effect of selenization conditions on the characteristics of the CZTSSe absorber layer and has provided valuable information for developing CZTSSe thin film solar cells.

Keywords

A

Cite this article

Download citation ▾
Xin Bai, Yuming Xue, Hongli Dai, Luoxin Wang, Xinfeng Bai, Xiaofeng Hu. Effects of selenization conditions on the microstructure and optoelectronic properties of CZTSSe absorber layers prepared by the sol-gel method. Optoelectronics Letters, 2025, 21(11): 661-666 DOI:10.1007/s11801-025-3168-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Walsh A, Chen S, Wei S H. et al.. Kesterite thin-film solar cells: advances in materials modelling of Cu2ZnSnS4. Advanced energy materials, 2012, 2(4): 400-409. J]

[2]

WANG A, HE M, GREEN M A, et al. A critical review on the progress of kesterite solar cells: current strategies and insights[J]. Advanced energy materials, 2023, 13(2).

[3]

Rho J, Kurtz S R, Leilaeioun A M. et al.. Revisiting the terawatt challenge. MRS bulletin, 2020, 45(3): 159-164. J]

[4]

Guerroum J, Al-Hattab M, Moudou L. et al.. Structural, electronic, and optical studies of chalcogenides stannite Cu2CdSnX4 (X=S, Se, and Te): insights from the DFT study. Optoelectronics letters, 2025, 21: 69-76. J]

[5]

Liu W, Guo B, Mak C. et al.. Facile synthesis of ultrafine Cu2ZnSnS4 nanocrystals by hydrothermal method for use in solar cells. Thin solid films, 2013, 535: 39-43. J]

[6]

Andres C, Haass S G, Romanyuk Y E. et al.. 9.4% efficient Cu2ZnSnSe4 solar cells from co-sputtered elemental metal precursor and rapid thermal annealing. Thin solid films, 2017, 633: 141-145. J]

[7]

Hu X F, Xue Y M, Dai H L. et al.. Research on conduction band offset of CZTSSe solar cell with double absorber layers. Optoelectronics letters, 2025, 21: 391-396. J]

[8]

Ratz T, Brammertz G, Caballero R. et al.. Physical routes for the synthesis of kesterite. Journal of physics-energy, 2019, 1(4): 042003[J]

[9]

Mitzi D B, Gunawan O, Todorov T K. et al.. The path towards a high-performance solution-processed kesterite solar cell. Solar energy materials and solar cells, 2011, 95(6): 1421-1436. J]

[10]

Zhou J, Xu X, Wu H. et al.. Control of the phase evolution of kesterite by tuning of the selenium partial pressure for solar cells with 13.8% certified efficiency. Nature energy, 2023, 8(5): 526. J]

[11]

Shi J J, Wang J L, Meng F Q. et al.. Multinary alloying for facilitated cation exchange and suppressed defect formation in kesterite solar cells with above 14% certified efficiency. Nature energy, 2024, 9: 1095-1104[J]

[12]

Son D H, Kim S H, Kim SY. et al.. Effect of solid-H2S gas reactions on CZTSSe thin film growth and photovoltaic properties of a 12.62% efficiency device. Journal of materials chemistry A, 2019, 7(44): 25279-25289. J]

[13]

Haass S G, Diethelm M, Werner M. et al.. 11.2% efficient solution processed kesterite solar cell with a low voltage deficit. Advanced energy materials, 2015, 5(18): 1500712. J]

[14]

Hadke S H, Levcenko S, Lie S. et al.. Synergistic effects of double cation substitution in solution-processed CZTS solar cells with over 10% efficiency. Advanced energy materials, 2018, 8(32): 1802540. J]

[15]

Qi Y F, Kou D X, Zhou W H. et al.. Engineering of interface band bending and defects elimination via a Ag-graded active layer for efficient (Cu,Ag)2ZnSn(S,Se)4 solar cells. Energy & environmental science, 2017, 10(11): 2401-2410. J]

[16]

Mainz R, Walker B C, Schmidt S S. et al.. Real-time observation of Cu2ZnSn(S,Se)4 solar cell absorber layer formation from nanoparticle precursors. Physical chemistry chemical physics, 2013, 15(41): 18281-18289. J]

[17]

Roelofs K E, Guo Q, Subramoney S. et al.. Investigation of local compositional uniformity in Cu2ZnSn(S,Se)4 thin film solar cells prepared from nanoparticle inks. Journal of materials chemistry A, 2014, 2(33): 13464-13470. J]

[18]

Lin X, Kavalakkatt J, Ennaoui A. et al.. Cu2ZnSn(S,Se)4 thin film absorbers based on ZnS, SnS and Cu3SnS4 nanoparticle inks: enhanced solar cells performance by using a two-step annealing process. Solar energy materials and solar cells, 2015, 132: 221-229. J]

[19]

Wang W, Winkler M T, Gunawan O. et al.. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Advanced energy materials, 2014, 4(7): 1301465. J]

[20]

Giraldo S, Saucedo E, Neuschitzer M. et al.. How small amounts of Ge modify the formation pathways and crystallization of kesterites. Energy & environmental science, 2018, 11(3): 582-593. J]

[21]

Lee Y S, Gershon T, Gunawan O. et al.. Cu2ZnSnSe4 thin-film solar cells by thermal co-evaporation with 11.6% efficiency and improved minority carrier diffusion length. Advanced energy materials, 2015, 5(7): 1401372. J]

[22]

Olgar M A, Sarp A O, Seyhan A. et al.. Impact of stacking order and annealing temperature on properties of CZTS thin films and solar cell performance. Renewable energy, 2021, 179: 1865-1874. J]

[23]

Li J, Huang J, Cong J. et al.. Large-grain spanning monolayer Cu2ZnSnSe4 thin-film solar cells grown from metal precursor. Small, 2022, 18(9): 2105044. J]

[24]

Tuan D A, Ke N H, Loan P T K. et al.. A method to improve crystal quality of CZTSSe absorber layer. Journal of sol-gel science and technology, 2018, 87(1): 245-253. J]

[25]

Punathil P, Artegiani E, Zanetti S. et al.. A simple method for Ge incorporation to enhance performance of low temperature and non-vacuum based CZTSSe solar cells. Solar energy, 2022, 236: 599-607. J]

[26]

Padhy S, Kumar V, Chaure N B. et al.. Impact of germanium nano layer on the CZTSe absorber layer properties. Materials science in semiconductor processing, 2022, 138: 106276. J]

[27]

Wu X, Xu J, Zhuang C. Influences of selenization temperature on the properties of CZTSSe thin films and CZTSSe/Mo interfaces. Journal of materials science-materials in electronics, 2021, 32(24): 28373-28381. J]

[28]

Zheng H, Wei A, Xiong H. Influence of deposition parameters on the morphology, structural and optical properties of Cu2ZnSnS4 thin films grown by solvothermal method. Chalcogenide letters, 2018, 15(6): 327-337[J]

[29]

Zhao Y, Han X, Chang L. et al.. Effects of selenization conditions on microstructure evolution in solution processed Cu2ZnSn(S,Se)4 solar cells. Solar energy materials and solar cells, 2019, 195: 274-279. J]

[30]

Hu Z S, Xue Y M, Dai H L. et al.. Effect of preheating and annealing temperature on the microstructure and optoelectronic properties of CZTS films prepared by sol-gel method. Optoelectronics letters, 2023, 19(7): 410-415. J]

RIGHTS & PERMISSIONS

Tianjin University of Technology

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/