A triple-band miniaturized end-fire antenna based on odd-mode spoof surface plasmonic polariton waveguide resonator

Yukun Bai , Mengqun Mao

Optoelectronics Letters ›› 2025, Vol. 21 ›› Issue (8) : 462 -467.

PDF
Optoelectronics Letters ›› 2025, Vol. 21 ›› Issue (8) : 462 -467. DOI: 10.1007/s11801-025-3149-2
Article
research-article

A triple-band miniaturized end-fire antenna based on odd-mode spoof surface plasmonic polariton waveguide resonator

Author information +
History +
PDF

Abstract

A triple-band miniaturized end-fire antenna based on the odd modes of spoof surface plasmonic polariton (SSPP) waveguide resonator is proposed in this paper. To meet the ever increasing demand for more communication channels and less antenna sizes, multi-band antennas are currently under intensive investigation. By a novel feeding method, three odd modes are excited on an SSPP waveguide resonator, which performs as an end-fire antenna operating at three bands, 7.15–7.26 GHz, 11.6–12.2 GHz and 13.5–13.64 GHz. It exhibits reasonably high and stable maximum gains of 5.26 dBi, 7.97 dBi and 10.1 dBi and maximum efficiencies of 64%, 92% and 98% at the three bands, respectively. Moreover, in the second band, the main beam angle shows a frequency dependence with a total scanning angle of 19°. The miniaturized triple-band antenna has a great potential in wireless communication systems, satellite communication and radar systems.

Keywords

A

Cite this article

Download citation ▾
Yukun Bai, Mengqun Mao. A triple-band miniaturized end-fire antenna based on odd-mode spoof surface plasmonic polariton waveguide resonator. Optoelectronics Letters, 2025, 21(8): 462-467 DOI:10.1007/s11801-025-3149-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

PendryJ B, Martin-MorenoL, Garcia-VidalF J. Mimicking surface plasmons with structured sufaces. Science, 2004, 305(5685): 847-848[J]

[2]

PitarkeJ M, SilkinV M, ChulkovE V, et al.. Theory of surface plasmons and surface-plasmon polaritons. Reports on progress in physics, 2006, 70(1): 1-87[J]

[3]

NagpalP, LindquistN C, OhS H, et al.. Ultrasmooth patterned metals for plasmonics and metamaterials. Science, 2009, 325(5940): 594-597[J]

[4]

ShenX P, CuiT J. Conformal surface plasmons propagating on ultrathin and flexible films. Proceedings of the national academy of sciences, 2013, 110(1): 40-45[J]

[5]

BaiY K, LiS. Terahertz dual-beam leaky-wave antenna based on composite spoof surface plasmon waveguide. Optoelectronics letters, 2023, 19(2): 72-76[J]

[6]

ZhangC, RenJ, DuX, et al.. Dual-beam leaky-wave antenna based on dual-mode spoof surface plasmon polaritons. IEEE antennas and wireless propagation letters, 2021, 20(10): 2008-2012[J]

[7]

ChaiB, LiY J, BaiY K. A wide-band continuous beam-scanning leaky-wave antenna with a stable gain fed by spoof surface plasmon polaritons. Optoelectronics letters, 2022, 18(4): 210-214[J]

[8]

XuH T, GuanD F, YangZ B, et al.. An ultra-wideband out-of-phase power divider based on odd-mode spoof surface plasmon polariton. International journal of RF and microwave computer-aided engineering, 2021, 314e22583[J]

[9]

EhsanF, NaderK, MohammadA C. An ultra-wideband three-way power divider based on spoof surface plasmon polaritons. Journal of applied physics, 2018, 12423235310[J]

[10]

MittalG, PathakN P. Spoof surface plasmon polaritons based microwave bandpass filter. Microwave and optical technology letters, 2020, 63(2): 51-57[J]

[11]

GorbachevA P, TarasenkoN V, AtuchinV V. Planar dual-frequency quasi-yagi antenna. Electromagnetics, 2016, 36(5): 328-339[J]

[12]

ChuQ X, LiX R, YeM. High gain printed log-periodic dipole array antenna with parasitic cell for 5G communication. IEEE transactions on antennas & propagation, 2017, 65(12): 6338-6344[J]

[13]

RebolloA, GonzaloR, EderraI. Full W-band microstrip fed vivaldi antenna. Journal of infrared, millimeter, and terahertz waves, 2016, 37(8): 786-794[J]

[14]

WangY, AoM, SuJ, et al.. An ultra-wideband triple-polarization reconfigurable vivaldi array antenna. International journal of electronics and communications, 2025, 18801155575[J]

[15]

YinJ, BaoD, RenJ, et al.. Endfire radiations of spoof surface plasmon polaritons. IEEE antennas and wireless propagation letters, 2017, 16: 597-600[J]

[16]

TianD, RanX, PengG, et al.. Low-profile high-efficiency bidirectional endfire antenna based on spoof surface plasmon polaritons. IEEE antennas and wireless propagation letters, 2018, 17(5): 837-840[J]

[17]

FuQ F, NiH, LuoG Q, et al.. A high aperture efficiency endfire antenna based on spoof surface plasmon polaritons. IEEE transactions on antennas and propagation, 2023, 71(1): 50-57[J]

[18]

DuX, LiH, YinY. Wideband fish-bone antenna utilizing odd-mode spoof surface plasmon polaritons for end-fire radiation. IEEE transactions on antennas and propagation, 2019, 67(7): 4848-4853[J]

[19]

GeS K, ZhangQ F, RashidA K, et al.. Analysis of asymmetrically corrugated goubau-line antenna for endfire radiation. IEEE transactions on antennas and propagation, 2019, 67(11): 7133-7138[J]

[20]

XiaoM R, RashidA K, LiuB Y, et al.. Design of high-gain single-layer endfire antenna using phase-reversed asymmetric spoof surface plasmon polaritons. IEEE antennas and wireless propagation letters, 2023, 22(3): 641-644[J]

[21]

HanY J, GongS H, WangJ F, et al.. Shared-aperture antennas based on even- and odd-mode spoof surface plasmon polaritons. IEEE transactions on antennas and propagation, 2020, 68(4): 3254-3258[J]

[22]

QuB Y, YanS, ZhangA X, et al.. Shared-aperture antennas based on mode modulation of a patch antenna and spoof surface plasmon polaritons. Journal of physics D-applied physics, 2022, 554045002[J]

[23]

TianD, KianinejadA, ShiT, et al.. Compact dual-band high-efficiency antennas based on spoof surface plasmon polaritons. IEEE transactions on antennas and propagation, 2023, 71(1): 1075-1080[J]

[24]

SarkarS, GuptaB. A tri-band spoof surface plasmon polaritons based antenna for endfire radiation. International journal of RF and microwave computer-aided engineering, 2021, 317e22668[J]

[25]

YinJ Y, YinT, DuX Y, et al.. Efficient conversion from spoof surface plasmon polaritons to radiation mode. Applied optics, 2021, 60(12): 3374-3379[J]

RIGHTS & PERMISSIONS

Tianjin University of Technology

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/