Experimental study on the evolution of bright-dark pulses in a 2 µm mode-locked thulium/holmium co-doped fiber laser

Xiaofa Wang , Jie Wang , Kunyang Zhao

Optoelectronics Letters ›› 2024, Vol. 20 ›› Issue (12) : 714 -720.

PDF
Optoelectronics Letters ›› 2024, Vol. 20 ›› Issue (12) : 714 -720. DOI: 10.1007/s11801-024-3285-0
Article

Experimental study on the evolution of bright-dark pulses in a 2 µm mode-locked thulium/holmium co-doped fiber laser

Author information +
History +
PDF

Abstract

We experimentally demonstrate the effects of pump power and polarization state on the evolution of bright-dark pulses (BDPs) in a figure-eight passively mode-locked thulium/holmium co-doped fiber laser (THDFL) using nonlinear amplifying loop mirror (NALM) technology. As the pump power increases from 0.5 W to 1 W, the BDPs are separated and exhibit a linear increase in the time interval between the bright pulse (BP) and dark pulse (DP), which roughly corresponds to the reciprocal of the modulation frequency in the radio frequency (RF) spectrum. Additionally, the polarization state in the cavity is altered by adjusting the polarization controller (PC), and the central wavelength of spectrum, pulse waveform, and full width at half maximum (FWHM) of BDPs in different states are presented.

Cite this article

Download citation ▾
Xiaofa Wang, Jie Wang, Kunyang Zhao. Experimental study on the evolution of bright-dark pulses in a 2 µm mode-locked thulium/holmium co-doped fiber laser. Optoelectronics Letters, 2024, 20(12): 714-720 DOI:10.1007/s11801-024-3285-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zheng J C, Yang S, Zhu Z W, et al. Low mode-locking threshold and sub-90 fs Er-doped Mamyshev oscillator[J]. Optics communications, 2022, 508: 127711

[2]

Michalska M. Dispersion managed thulium-doped fiber laser mode-locked by the nonlinear loop mirror[J]. Optics & laser technology, 2021, 138: 106923

[3]

Wang T, Ma W, Jia Q, et al. Passively mode-locked fiber lasers based on nonlinearity at 2-µm band[J]. IEEE journal of selected topics in quantum electronics, 2017, 24(3): 1-11

[4]

Song Y, Shi X, Wu C, et al. Recent progress of study on optical solitons in fiber lasers[J]. Applied physics reviews, 2019, 6(2): 021313

[5]

Xiao Y, Bai X, Lv T. Combined solitary wave solution of higher-order nonlinear Schrödinger equation with non-Kerr terms in the heterogeneous optical fiber system[J]. Optik, 2019, 186: 315-320

[6]

Ferndandez-Diaz J M, Guinea A, Palacios S L. Solution of nonlinear wave equations of the complex quintic Ginzburg-Landau and nonlinear Schrodinger type[J]. IEEE photonics technology letters, 2002, 14(6): 807-809

[7]

Zhang W, Zhan L, Xian T, et al. Harmonic mode-locking in bidirectional domain-wall soliton fiber lasers[J]. Journal of lightwave technology, 2019, 37(21): 5417-5421

[8]

Kivshar Y S, Turitsyn S K. Vector dark solitons[J]. Optics letters, 1993, 18(5): 37-339

[9]

Xin Y, Shen H, Zhang S, et al. Tunable multi-wavelength bright-dark and dark-bright pulse pairs fiber lasers[J]. IEEE photonics journal, 2020, 12(6): 1-9

[10]

Zhao R, Li G, Zhang B, et al. Multi-wavelength bright-dark pulse pair fiber laser based on rhenium disulfide[J]. Optics express, 2018, 26(5): 5819-5826

[11]

Wang X F, Liu D X, Han H H, et al. Generation of cavity-birefringence-dependent multi-wavelength bright-dark pulse pair in a figure-eight thulium-doped fiber laser[J]. Chinese physics B, 2021, 30(5): 054205

[12]

Scholle K, Lamrini S, Koopmann P, et al. Bishnu P, et al. 2 µm laser sources and their possible applications[M]. Frontiers in guided wave optics and optoelectronics, 2010, India: IntechOpen 471-500

[13]

Wang F, Lan D, Zhang X, et al. Passively mode-locked thulium-doped fiber laser based on saturable absorption of carbon nanofibers[J]. Applied optics, 2021, 60(31): 9943-9950

[14]

Qiao J, Ahmed S, Cheng P K, et al. Tin telluride quantum dots as a new saturable absorber for a mode-locked Yb+ doped fiber laser[J]. Optics and laser technology, 2021, 142: 107258

[15]

Li G, Wang F, Liu J, et al. Few-layered W2C nanosheets based on passively mode-locked fiber lasers[J]. Optical materials express, 2021, 11(2): 299-309

[16]

Liu M, Qi Y, Yang S, et al. Switchable L-band dual-wavelength dark-bright pulse pair generation from an Er-doped mode-locked fiber laser with SMF-GIMF-SMF as the saturable absorber[J]. Applied physics B, 2022, 128(10): 190

[17]

Wang X, Wang J, Duan X. Experimental investigation on evolution of a split multi-wavelength bright-dark pulse in a mode-locked thulium-doped fiber laser[J]. Optoelectronics letters, 2022, 18(12): 717-722

[18]

Paul N, Singh C P, Gupta P K, et al. Rectangular dark pulses in all-normal dispersion fiber oscillator[J]. Optics and laser technology, 2022, 147: 107641

[19]

Najm M M, Al-Hiti A S, Zhang P, et al. Generation of bright-dark pulses in a Q-switched thulium-doped fiber laser by using 8-HQCdCl2H2O[J]. Optics & laser technology, 2023, 164: 109450

[20]

Pang Q, Zhu X, Shi L, et al. Generation of bright-dark soliton pairs in mode-locked fiber laser based on WSe2/MoSe2 heterojunction[J]. Infrared physics & technology, 2024, 136: 105069

[21]

Ma W, Wang T, Wang F, et al. 2.07-µm, 10-GHz repetition rate, multi-wavelength actively mode-locked fiber laser[J]. IEEE photonics technology letters, 2018, 31(3): 242-245

[22]

Zheng Y, Wang M, Zhao R, et al. Nonlinear optical absorption properties of zirconium selenide in generating dark soliton and dark-bright soliton pairs[J]. Applied optics, 2020, 59(2): 396-404

[23]

Guo B, Yao Y, Yang Y F, et al. Topological insulator: Bi2Se3/polyvinyl alcohol film-assisted multi-wavelength ultrafast erbium-doped fiber laser[J]. Journal of applied physics, 2015, 117(6): 063108

[24]

Zhang Z, Mou C, Yan Z, et al. Orthogonally polarized bright-dark pulse pair generation in mode-locked fiber laser with a large-angle tilted fiber grating[J]. Applied physics B, 2016, 122: 1-6

[25]

Wang X, Zhou P, Wang X, et al. 2 µm bright-dark pulses in Tm-doped fiber ring laser with net anomalous dispersion[J]. Applied physics express, 2014, 7(2): 022704

[26]

Yang H, Li X, Wang Y, et al. TaSe2-based mode-locked fiber laser with four switchable operating states[J]. Optics and laser technology, 2021, 138: 106924

[27]

Wang Y, Huang H, Li X, et al. Controllable soliton pairs in few-layer FePSe3 nanosheets-based optical-intensity modulators[J]. ACS applied nano materials, 2020, 3(8): 7713-7719

[28]

Hu X, Guo J, Zhao L M, et al. Dark-bright soliton trapping in a fiber laser[J]. Optics letters, 2021, 46(5): 1105-1108

[29]

Han L, Wang T, Liu R, et al. Generation of flat-top Q-switched envelope dissipative soliton resonance pulse in passively mode-locked fiber laser[J]. IEEE photonics journal, 2020, 12(2): 1-8

[30]

Wu Q, Wu Z, Yao Y, et al. Three-component bright-dark-bright vector pulse fiber laser based on MoS2 saturable absorber[J]. Optics communications, 2021, 498: 127231

[31]

Guo B, Yao Y, Tian J J, et al. Observation of bright-dark soliton pair in a fiber laser with topological insulator[J]. IEEE photonics technology letters, 2015, 27(7): 701-704

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/