Development of a bias power supply for Geiger mode avalanche photodiodes

Yinjie Meng, Zhengjun Wei, Ziling Yan, Jindong Wang

Optoelectronics Letters ›› 2023, Vol. 19 ›› Issue (11) : 659-665.

Optoelectronics Letters ›› 2023, Vol. 19 ›› Issue (11) : 659-665. DOI: 10.1007/s11801-023-3057-2
Article

Development of a bias power supply for Geiger mode avalanche photodiodes

Author information +
History +

Abstract

Avalanche photodiodes (APDs) have high output and high stability requirements for bias power in Geiger mode. This paper designs an APD with high boost ratio, high precision, low temperature drift, small size, and low power. Bias power supply, this module uses switching chip IC and flyback transformer to achieve high step-up ratio, realizes precise output control through precision operational amplifier and T-type resistor feedback network, and designs appropriate compensation network to improve system stability. The size of the module is 2.5 cm×2.5 cm, the output voltage is adjustable from 0 to 450 V, and the maximum ripple does not exceed 5.4 mV. By changing the control voltage, any type of APD in Geiger mode can be biased, and the maximum deviation of the bias voltage does not exceed 0.5%.

Cite this article

Download citation ▾
Yinjie Meng, Zhengjun Wei, Ziling Yan, Jindong Wang. Development of a bias power supply for Geiger mode avalanche photodiodes. Optoelectronics Letters, 2023, 19(11): 659‒665 https://doi.org/10.1007/s11801-023-3057-2

References

[1]
GaoB, WuZ H, ShiW X, et al.. Ability of strong-pulse illumination to hack self-differencing avalanche photodiode detectors in a high-speed quantum-key-distribution system[J]. Physical review A, 2022, 106(3):033713
CrossRef Google scholar
[2]
GhezziA, FarinaA, BassiA, et al.. Multispectral compressive fluorescence lifetime imaging microscopy with a SPAD array detector[J]. Optics letters, 2021, 46(6): 1353-1356
CrossRef Google scholar
[3]
Bartolo-PerezC, ChandiparsiS, MayetA S, et al.. Avalanche photodetectors with photon trapping structures for biomedical imaging applications[J]. Optics express, 2021, 29(12):19024-19033
CrossRef Google scholar
[4]
ZhouX, SunJ F, JiangP, et al.. Improvement of detection probability and ranging performance of Gm-APD LiDAR with spatial correlation and adaptive adjustment of the aperture diameter[J]. Optics and lasers in engineering, 2021, 138: 106452
CrossRef Google scholar
[5]
WipiejewskiT, AkulovaY A, FishG, et al.. Integration of active optical components[J]. Proceedings of SPIE - the international society for optical engineering, 2003, 4997: 1-12
[6]
TalavánD, EspañaS. Dynamic light scattering based on low-cost components[J]. Measurement science and technology, 2022, 33(6):065902
CrossRef Google scholar
[7]
RawatA, AhamedA, Bartolo-PerezC, et al.. Design and fabrication of high-efficiency, low-power, and low-leakage Si-avalanche photodiodes for low-light sensing[J]. ACS photonics, 2023, 10(5): 1416-1423
CrossRef Google scholar
[8]
ChenQ S, ZhangM. Technology and application of silicon avalanche photodiode[J]. Electronics & packaging, 2021, 21(3):030101(in Chinese)
[9]
BartoloniA, BaroneL M, CavallariF, et al.. High voltage system for the CMS electromagnetic calorimeter[J]. Nuclear instruments and methods in physics research section A: accelerators, spectrometers, detectors and associated equipment, 2007, 582(2): 462-468
CrossRef Google scholar
[10]
WeiZ J, WangJ D. A high precision avalanche photon diode bias power supply[J]. Telecom power technology, 2011, 28(04):73-74(in Chinese)
[11]
YangY Y, WangS W, HsiehC Y, et al.. Power management with a low-ripple high-conversion-ratio 80-V output voltage boost converter for avalanche photodiode system[J]. IEEE transactions on industrial electronics, 2013, 60(7):2627-2637
CrossRef Google scholar
[12]
XingH C, XuJ T, LiX Y, et al.. Development of Geiger mode circuit with silicon avalanche photodiode for ultraviolet optical communication[J]. Infrared technology, 2018, 40(10):966-971(in Chinese)
[13]
XiangY Y, GuoS G, WuY, et al.. Design of an APD bias voltage module with high precision and low power consumption[J]. Semiconductor optoelectronics, 2021, 42(04):556-561+567(in Chinese)
[14]
YauY T, HungT L. A flyback converter with novel active dissipative snubber[J]. IEEE access, 2022, 10: 108145-108158
CrossRef Google scholar
[15]
PatraS, SahuS K, AbichandaniP G, et al.. Self-operating flyback converter for boosting ultra-low voltage of thermoelectric power generator for IoT applications[J]. IEEE transactions on industrial electronics, 2022, 69(12):12957-12966
CrossRef Google scholar
[16]
LiangT J, ChenK H, ChenJ F. Primary side control for flyback converter operating in DCM and CCM[J]. IEEE transactions on power electronics, 2018, 33(4):3604-3612
CrossRef Google scholar
[17]
LuoH, ZangT L, ChenS, et al.. An adaptive off-time controlled DCM flyback PFC converter with unity power factor and high efficiency[J]. IEEE access, 2021, 9: 22493-22502
CrossRef Google scholar
[18]
HowimanpornS, BunlaksananusornC. Performance comparison of continuous conduction mode (CCM) and discontinuous conduction mode (DCM) flyback converters[C], 2003, New York, IEEE: 1434-14382
[19]
HimanshU, KhannaR. Various control methods for DC-DC buck converter[C], 2012, New York, IEEE: 1-4
[20]
YuX Y, ChenH F, ZouH, et al.. Simulation of a preamplifier for an extremely weak current measure circuit[J]. Nuclear electronics & detection technology, 2014, 34(12):1514-1517(in Chinese)
[21]
SANJAYA M. Switching power supplies A to Z[M]. WANG Z Q, ZHU W, LI Y Y, et al, Transl. 2nd ed. Beijing: Posts & Telecom Press, 2015: 328–351.

Accesses

Citations

Detail

Sections
Recommended

/