Compact yellow-orange Nd: YVO4/PPMgLN laser at 589 nm

Lei Ma , Xinkai Feng , Huaixi Chen , Xing Cheng , Jiaying Chen , Wanguo Liang

Optoelectronics Letters ›› 2023, Vol. 19 ›› Issue (11) : 641 -645.

PDF
Optoelectronics Letters ›› 2023, Vol. 19 ›› Issue (11) : 641 -645. DOI: 10.1007/s11801-023-3044-7
Article

Compact yellow-orange Nd: YVO4/PPMgLN laser at 589 nm

Author information +
History +
PDF

Abstract

We propose and make a compact yellow-orange laser of the Nd-doped yttrium vanadate (Nd: YVO4)/periodically poled Mg-doped lithium niobate (PPMgLN) module by Raman frequency-doubling at 589 nm. By reasonably designing the size of the Nd: YVO4 and 5 mol% PPMgLN crystals, cavity length and coating parameter, a compact 589 nm laser module with a total size of 3 mm×10 mm×1.5 mm is fabricated. In the laser module, the input surface of Nd: YVO4 crystal is end-pumped by an 808 nm laser diode (LD). Under the effect of linear resonant cavity structure, the output surface of PPMgLN crystal with a period of 9.48 µm generates 589 nm yellow-orange light. The experimental results show that the maximum output power at 589 nm is 390 mW at the pump power of 3 W with the optical-optical conversion efficiency of 13% and the stability of the output power is less than 2% within 3 h.

Cite this article

Download citation ▾
Lei Ma, Xinkai Feng, Huaixi Chen, Xing Cheng, Jiaying Chen, Wanguo Liang. Compact yellow-orange Nd: YVO4/PPMgLN laser at 589 nm. Optoelectronics Letters, 2023, 19(11): 641-645 DOI:10.1007/s11801-023-3044-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

MüllerA, MarschallS, JensenO B, et al.. Diode laser based light sources for biomedical applications[J]. Laser & photonics reviews, 2013, 7(5):605-627

[2]

DenbaarsS P, FeezellD, KelchnerK, et al.. Development of gallium-nitride-based light-emitting diodes (LEDs) and laser diodes for energy-efficient lighting and displays[J]. Acta materialia, 2013, 61(3):945-951

[3]

IslekM, Nilufer-ErdilD, KnuthsenP. Changes in flavonoids of sliced and fried yellow onions (A llium cepa L. var. zittauer) during storage at different atmospheric, temperature and light conditions[J]. Journal of food processing and preservation, 2015, 39(4):357-368

[4]

NevskyA Y, BresselU, ErnstingI, et al.. A narrow-line-width external cavity quantum dot laser for high-resolution spectroscopy in the near-infrared and yellow spectral ranges[J]. Applied physics B, 2008, 92: 501-507

[5]

MaxC E, OlivierS S, FriedmanH W, et al.. Image improvement from a sodium-layer laser guide star adaptive optics system[J]. Science, 1997, 277(5332):1649-1652

[6]

HuoX, QiY, ZhangY, et al.. Research development of 589 nm laser for sodium laser guide stars[J]. Optics and lasers in engineering, 2020, 134: 106207

[7]

FengY, HuangS, ShirakawaA, et al.. 589 nm light source based on Raman fiber laser[J]. Japanese journal of applied physics, 2004, 43(6A):L722

[8]

YueJ, SheC Y, WilliamsB P, et al.. Continuous-wave sodium D2 resonance radiation generated in single-pass sum-frequency generation with periodically poled lithium niobate[J]. Optics letters, 2009, 34(7): 1093-1095

[9]

YuanY, LiB, GuoX. Laser diode pumped Nd: YAG crystals frequency summing 589 nm yellow laser[J]. Optik, 2016, 127(2):710-712

[10]

ChenM, DaiS, YinH, et al.. Passively Q-switched yellow laser at 589 nm by intracavity frequency-doubled c-cut composite Nd: YVO4 self-Raman laser[J]. Optics & laser technology, 2021, 133: 106534

[11]

LI Y, HUANG X, MAO W, et al. Compact 589 nm yellow source generated by frequency-doubling of passively Q-switched Nd: YVO4 Raman laser[J]. Microwave and optical technology letters, 2022.

[12]

ArmstrongJ A, BloembergenN, DucuingJ, et al.. Interactions between light waves in a nonlinear dielectric[J]. Physical review, 1962, 127(6):1918

[13]

HoueM, TownsendP D. An introduction to methods of periodic poling for second-harmonic generation[J]. Journal of physics D: applied physics, 1995, 28(9): 1747

[14]

LiuW J. Study on nonlinear optical effects of optical superlattices and preparation of materials[D], 2003, Jinan, Shandong Normal University(in Chinese)

[15]

WangC L. Research on nonlinear optical effects and structural design of optical superlattices[D], 2005, Jinan, Shandong Normal University(in Chinese)

[16]

GayerO, SacksZ, GalunE, et al.. Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3[J]. Applied physics B, 2008, 91: 343-348

[17]

DuanY, LiY, XuC, et al.. Generation of 589 nm emission via frequency doubling of a composite c-cut Nd: YVO4 self-Raman laser[J]. IEEE photonics technology letters, 2022, 34(15):831-834

[18]

MILLER G D. Periodically poled lithium niobate: modeling, fabrication, and nonlinear optical performance[M]. Stanford University, 1998.

[19]

MizuuchiK, MorikawaA, SugitaT, et al.. Electric-field poling in Mg-doped LiNbO3[J]. Journal of applied physics, 2004, 96(11):6585-6590

[20]

BuzádyA, GálosR, MakkaiG, et al.. Temperature-dependent terahertz time-domain spectroscopy study of Mg-doped stoichiometric lithium niobate[J]. Optical materials express, 2020, 10(4):998-1006

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/