Wavefront detection performance analysis of plenoptic sensor

Tao Jiang , Jinghui Zhang , Haitao Wang , Chunhong Qiao , Chengyu Fan

Optoelectronics Letters ›› 2023, Vol. 19 ›› Issue (9) : 526 -531.

PDF
Optoelectronics Letters ›› 2023, Vol. 19 ›› Issue (9) : 526 -531. DOI: 10.1007/s11801-023-3026-9
Article

Wavefront detection performance analysis of plenoptic sensor

Author information +
History +
PDF

Abstract

A numerical simulation model of plenoptic sensor aberration wavefront detection is established to simulate and analyze the detection performance of plenoptic sensor aberration wavefront for different turbulence intensities. The results show that the plenoptic sensor can achieve better distortion wavefront detection, and its wavefront detection accuracy improves with turbulence intensity. The unique optical structure design of the plenoptic sensor makes it more suitable for aberration wavefront detection in strong turbulent conditions. The wavefront detection performance of the plenoptic sensor is not only related to its wavefront reconstruction algorithm but also closely related to its structural parameter settings. The influence of structural parameters on the wavefront detection accuracy of plenoptic sensors under different turbulence intensities is simulated and analyzed. The variation law of wavefront detection accuracy and structural parameters under different turbulence intensities is summarized to provide a reference for the structural design and parameter optimization of plenoptic sensors.

Cite this article

Download citation ▾
Tao Jiang, Jinghui Zhang, Haitao Wang, Chunhong Qiao, Chengyu Fan. Wavefront detection performance analysis of plenoptic sensor. Optoelectronics Letters, 2023, 19(9): 526-531 DOI:10.1007/s11801-023-3026-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

GershunA. The light field[J]. Journal of mathematics and physics, 1939, 18(1–4):51-151

[2]

AdelsonE H, WangJ Y. Single lens stereo with a plenoptic camera[J]. IEEE transactions on pattern analysis and machine intelligence, 1992, 14(2):99-106

[3]

WuG, MasiaB, JaraboA, et al.. Light field image processing: An overview[J]. IEEE journal of selected topics in signal processing, 2017, 11(7):926-954

[4]

WangT C, ZhuJ Y, KalantariN K, et al.. Light field video capture using a learning-based hybrid imaging system[J]. ACM transactions on graphics (TOG), 2017, 36(4):1-13

[5]

BishopT E, FavaroP. The light field camera: Extended depth of field, aliasing, and superresolution[J]. IEEE transactions on pattern analysis and machine intelligence, 2011, 34(5):972-986

[6]

ZhaoS Y, ChenZ B. Light field image coding via linear approximation prior[C], 2017, New York, IEEE: 4562-4566

[7]

HuangX P, AnP, ShenL Q, et al.. Efficient light field images compression method based on depth estimation and optimization[J]. IEEE access, 2018, 6: 48984-48993

[8]

WangC, ZhangJ, GaoJ. Anti-specular light-field depth estimation algorithm[J]. Journal of image and graphics, 2020, 25(12):2630-2646

[9]

FanX T, LiY, LuoX W, et al.. Depth estimation based on light field structure characteristic and multiview matching[J]. Infrared and laser engineering, 2019, 48(05):0524001

[10]

RuiM D, LiuC, ChenM, et al.. Application of adaptive optics on the satellite laser communication ground station[J]. Opto-electronic engineering, 2018, 45(3): 49-57(in Chinese)

[11]

TanY, YangP, DongL Z, et al.. Active beam cleanup of pulsed slab laser based on 59-unit adaptive optics system[J]. Scientia sinica physica, mechanica & astronomica, 2017, 47(8):51-59 in Chinese)

[12]

DengK R, WeiK, JinK, et al.. Research on high-contrast imaging performance of 1.8 m telescope sodium beacon adaptive optical system[J]. Infrared and laser engineering, 2020, 49(8):281-289

[13]

WeiP, LiX Y, LuoX, et al.. Influence of lack of light in partial subapertures on wavefront reconstruction for Shack-Hartmann wavefront sensor[J]. Chinese journal of lasers, 2020, 47(4):0409002 in Chinese)

[14]

LiuR F, ShenF. Study on algorithms for wavefront reconstruction of curvature sensor[J]. Opto-electronic engineering, 2005, 32(10): 6-9(in Chinese)

[15]

CLARE R M, LANE R G. Comparison of wavefront sensing using subdivision at the aperture and focal planes[J]. Palmerston north, 2003: 187–192.

[16]

Rodrìguez-RamosM, CastelláB F, NavaF P, et al.. Wavefront and distance measurement using the CAFADIS camera[J]. Astronomical telescopes and instrumentation: synergies between ground and space, 2008, 7015: 70155Q

[17]

WuC, DavisC C, EijkA V, et al.. Modified plenoptic camera for phase and amplitude wavefront sensing[J]. Proceedings of SPIE - the international society for optical engineering, 2013, 8874: 88740I

[18]

LiuY, QiaoC H, FengX X, et al.. Simulation of wavefront phase reconstruction by plenoptic sensor[J]. Journal of atmospheric and environmental optics, 2020, 15(2):101-109

[19]

WuC, KoJ, DavisC C. Using a plenoptic sensor to reconstruct vortex phase structures[J]. Optics letters, 2016, 41(14):3169-3172

[20]

HuJ, ChenT, LinX, et al.. Improved wavefront reconstruction and correction strategy for adaptive optics system with a plenoptic sensor[J]. IEEE photonics journal, 2021, 13(4):1-8

[21]

WangZ, ChenT, LinX, et al.. A local threshold checkerboard algorithm for adaptive optics system with a plenoptic sensor[J]. IEEE photonics journal, 2021, 14(1):1-9

[22]

SchmidtJ D. Numerical simulation of optical wave propagation with examples in MATLAB[M], 2010, Washington, SPIE Press

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/