Modeling and analysis of actively Q-switched Fe: ZnSe laser pumped by a 2.8 µm fiber laser

Xiaolin Liang, Songqing Zhou, Zhizhuang Liu, Bengang Bao

Optoelectronics Letters ›› 2023, Vol. 19 ›› Issue (9) : 513-518.

Optoelectronics Letters ›› 2023, Vol. 19 ›› Issue (9) : 513-518. DOI: 10.1007/s11801-023-3016-y
Article

Modeling and analysis of actively Q-switched Fe: ZnSe laser pumped by a 2.8 µm fiber laser

Author information +
History +

Abstract

A theoretical model concerning active Q-switching of an Fe: ZnSe laser pumped by a continuous-wave (CW) 2.8 µm fiber laser is developed. Calculations are compared with the recently reported experiment results, and good agreement is achieved. Effects of principal parameters, including pump power, output reflectivity, ion concentration and temperature of crystal, on the laser output performance are investigated and analyzed. Numerical results demonstrate that similar to highly efficient CW Fe: ZnSe laser, low temperature of the crystal is significant to obtain high peak power Q-switched pulses. The numerical simulation results are useful for optimizing the design of actively Q-switched Fe: ZnSe laser.

Cite this article

Download citation ▾
Xiaolin Liang, Songqing Zhou, Zhizhuang Liu, Bengang Bao. Modeling and analysis of actively Q-switched Fe: ZnSe laser pumped by a 2.8 µm fiber laser. Optoelectronics Letters, 2023, 19(9): 513‒518 https://doi.org/10.1007/s11801-023-3016-y

References

[1]
JacksonS D. Towards high-power mid-infrared emission from a fiber laser[J]. Nature photonics, 2012, 6(7):423-431
CrossRef Google scholar
[2]
MirovS B, FedorovV V, MartyshkinD, et al.. Progress in mid-IR lasers based on Cr and Fe-doped II-VI chalcogenides[J]. IEEE journal of selected topics in quantum electronics, 2014, 21(1):292-310
CrossRef Google scholar
[3]
ZHU X, PEYGHAMBARIAN N. High-power ZBLAN glass fiber lasers: review and prospect[J]. Advances in optoelectronics, 2010, 1–23.
[4]
AkimovV A, VoronovA A, KozlovskiiV I, et al.. Efficient IR Fe: ZnSe laser continuously tunable in the spectral range from 3.77 to 4.40 µm[J]. Quantum electronics, 2004, 34(10):912
CrossRef Google scholar
[5]
BashkinA S, GurovL V, KurdyukovM V. Possibilities of improving the performance of an autonomous CW chemical DF laser by replacing the slot nozzles by the ramp ones in the nozzle array[J]. Quantum electronics, 2011, 41(8): 697-702
CrossRef Google scholar
[6]
PanQ, XieJ, WangC, et al.. Non-chain pulsed DF laser with an average power of the order of 100 W[J]. Applied physics B, 2016, 122(7):1-6
CrossRef Google scholar
[7]
BeckM, HofsteterD, AellenT, et al.. Continuous wave operation of a mid-infrared semiconductor laser at room temperature[J]. Science, 2002, 295(11):301-305
CrossRef Google scholar
[8]
MaesF, FortinV, PoulainS, et al.. Room-temperature fiber laser at 3.92 µm[J]. Optica, 2018, 5(7):761-764
CrossRef Google scholar
[9]
XingT, WangL, HuS, et al.. Widely tunable and narrow-bandwidth pulsed mid-IR PP MgLN-OPO by self-seeding dual etalon-coupled cavities[J]. Optics express, 2017, 25(25):31810-31815
CrossRef Google scholar
[10]
QianC P, YaoB Q, ZhaoB R, et al.. High repetition rate 102 W middle infrared ZnGeP2 master oscillator power amplifier system with thermal lens compensation[J]. Opticsletters, 2019, 44(3):715-718
[11]
AdamsJ J, BibeauC, PageR H, et al.. 4.0-45-µm lasing of Fe: ZnSe below 180K, a new mid-infrared laser material[J]. Optics letters, 1999, 24(23):1720-1722
CrossRef Google scholar
[12]
EvansJ W, BerryP A, ScheplerK L. 840 mW continuous-wave Fe: ZnSe laser operating at 4140 nm[J]. Optics letters, 2012, 37(23):5021-5023
CrossRef Google scholar
[13]
FrolovM P, KorostelinY V, KozlovskyV I, et al.. 3 J pulsed Fe: ZnS laser tunable from 3.44 to 4.19 µm[J]. Laser physics letters, 2015, 12(5):055001
CrossRef Google scholar
[14]
FedorovV, MartyshkinD, KarkiK, et al.. Q-switched and gain-switched Fe: ZnSe lasers tunable over 3.60–5.15 µm[J]. Optics express, 2019, 27(10): 13934-13941
CrossRef Google scholar
[15]
KernalJ, FedorovV V, GallianA, et al.. 3.9-4.8 µm gain-switched lasing of Fe: ZnSe at room temperature[J]. Optics express, 2005, 13(26):10608-10615
CrossRef Google scholar
[16]
MyoungN S, MartyshkinD V, FedorovV V, et al.. Energy scaling of 4.3 µm room temperature Fe: ZnSe laser[J]. Optics letters, 2011, 36(1):94-96
CrossRef Google scholar
[17]
LiE, UeharaH, YaoW, et al.. High-efficiency continuous wave Fe: ZnSe mid-IR laser end pumped by an Er: YAP laser[J]. Optics express, 2021, 29(26):44118-44128
CrossRef Google scholar
[18]
AntonovV A, BukinV V, DolmatovT V, et al.. Single-nanosecond-pulse lasing in heavily doped Fe: ZnSe[J]. IEEE photonics journal, 2021, 13(1):150087
CrossRef Google scholar
[19]
FirsovK N, GavrishchukE M, IkonnikovV B, et al.. High-energy room-temperature Fe2+: ZnS laser[J]. Laser physics letters, 2016, 13: 015001
CrossRef Google scholar
[20]
LiY Y, YangK, LiuG Y, et al.. A 1 kHz Fe: ZnSe laser gain-switched by a ZnGeP2 optical parametric oscillator at 77 K[J]. Chinese physics letters, 2019, 36(7): 074201
CrossRef Google scholar
[21]
PotemkinF, BravyB, KozlovskyV, et al.. Toward a sub-terawatt mid-IR (4-5 µm) femtosecond hybrid laser system based on parametric seed pulse generation and amplification in Fe2+: ZnSe[J]. Laser physics letters, 2016, 13: 015401
CrossRef Google scholar
[22]
MartyshkinD, KarkiK, FedorovV, et al.. Room temperature, nanosecond, 60 mJ/pulse Fe: ZnSe master oscillator power amplifier system operating at 3.8–5.0 µm[J]. Optics express, 2021, 29(2): 2387-2393
CrossRef Google scholar
[23]
ZhuX, JainR. Numerical analysis and experimental results of high power Er/Pr: ZBLAN 2.7 µm fiber lasers with different pumping designs[J]. Applied optics, 2006, 45: 7118-7125
CrossRef Google scholar
[24]
PushkinA V, MigalE A, UeharaH, et al.. Compact, highly efficient, 2.1-W continuous-wave mid-infrared Fe: ZnSe coherent source, pumped by an Er: ZBLAN fiber laser[J]. Optics letters, 2018, 43(24):5941-5944
CrossRef Google scholar
[25]
ShenY, WanY, WangY, et al.. 3.8 µm continuous-wave all solid-state Fe: ZnSe laser[J]. Chinese journal of lasers, 2023, 50(14):1401005(in Chinese)
[26]
UeharaH, TsunaiT, HanB, et al.. 40 kHz, 20 ns acousto-optically Q-switched 4 µm Fe: ZnSe laser pumped by a fluoride fiber laser[J]. Optics letters, 2020, 45(10): 2788-2791
CrossRef Google scholar
[27]
PanQ, ChenF, XieJ, et al.. Theoretical study of the characteristics of a continuous wave iron-doped ZnSe laser[J]. Laser physics, 2018, 28(3):035002
CrossRef Google scholar
[28]
FedorovV V, MirovS B, GallianA, et al.. 3.77-5.05 µm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures[J]. IEEE journal ofquantumelectronics, 2006, 42(9): 907-917
CrossRef Google scholar
[29]
JacksonS D, KingT A, PollnauM. Modelling of high-power diode-pumped erbium 3 µm fibre lasers[J]. Journal of modern optics, 2000, 47(11):1987-1994
[30]
ShenY, WangY, LuanK, et al.. High peak power actively Q-switched mid-infrared fiber lasers at 3 µm[J]. Applied physics B: lasers and optics, 2017, 123(105):1-6
[31]
FrolovM P, KorostelinY V, KozlovskyV I, et al.. High-energy thermoelectric cooled Fe: ZnSe laser tunable over 3.75–4.82µm[J]. Optics letters, 2018, 43(3):623-626
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/