Modeling and analysis of actively Q-switched Fe: ZnSe laser pumped by a 2.8 µm fiber laser

Xiaolin Liang , Songqing Zhou , Zhizhuang Liu , Bengang Bao

Optoelectronics Letters ›› 2023, Vol. 19 ›› Issue (9) : 513 -518.

PDF
Optoelectronics Letters ›› 2023, Vol. 19 ›› Issue (9) : 513 -518. DOI: 10.1007/s11801-023-3016-y
Article

Modeling and analysis of actively Q-switched Fe: ZnSe laser pumped by a 2.8 µm fiber laser

Author information +
History +
PDF

Abstract

A theoretical model concerning active Q-switching of an Fe: ZnSe laser pumped by a continuous-wave (CW) 2.8 µm fiber laser is developed. Calculations are compared with the recently reported experiment results, and good agreement is achieved. Effects of principal parameters, including pump power, output reflectivity, ion concentration and temperature of crystal, on the laser output performance are investigated and analyzed. Numerical results demonstrate that similar to highly efficient CW Fe: ZnSe laser, low temperature of the crystal is significant to obtain high peak power Q-switched pulses. The numerical simulation results are useful for optimizing the design of actively Q-switched Fe: ZnSe laser.

Cite this article

Download citation ▾
Xiaolin Liang, Songqing Zhou, Zhizhuang Liu, Bengang Bao. Modeling and analysis of actively Q-switched Fe: ZnSe laser pumped by a 2.8 µm fiber laser. Optoelectronics Letters, 2023, 19(9): 513-518 DOI:10.1007/s11801-023-3016-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

JacksonS D. Towards high-power mid-infrared emission from a fiber laser[J]. Nature photonics, 2012, 6(7):423-431

[2]

MirovS B, FedorovV V, MartyshkinD, et al.. Progress in mid-IR lasers based on Cr and Fe-doped II-VI chalcogenides[J]. IEEE journal of selected topics in quantum electronics, 2014, 21(1):292-310

[3]

ZHU X, PEYGHAMBARIAN N. High-power ZBLAN glass fiber lasers: review and prospect[J]. Advances in optoelectronics, 2010, 1–23.

[4]

AkimovV A, VoronovA A, KozlovskiiV I, et al.. Efficient IR Fe: ZnSe laser continuously tunable in the spectral range from 3.77 to 4.40 µm[J]. Quantum electronics, 2004, 34(10):912

[5]

BashkinA S, GurovL V, KurdyukovM V. Possibilities of improving the performance of an autonomous CW chemical DF laser by replacing the slot nozzles by the ramp ones in the nozzle array[J]. Quantum electronics, 2011, 41(8): 697-702

[6]

PanQ, XieJ, WangC, et al.. Non-chain pulsed DF laser with an average power of the order of 100 W[J]. Applied physics B, 2016, 122(7):1-6

[7]

BeckM, HofsteterD, AellenT, et al.. Continuous wave operation of a mid-infrared semiconductor laser at room temperature[J]. Science, 2002, 295(11):301-305

[8]

MaesF, FortinV, PoulainS, et al.. Room-temperature fiber laser at 3.92 µm[J]. Optica, 2018, 5(7):761-764

[9]

XingT, WangL, HuS, et al.. Widely tunable and narrow-bandwidth pulsed mid-IR PP MgLN-OPO by self-seeding dual etalon-coupled cavities[J]. Optics express, 2017, 25(25):31810-31815

[10]

QianC P, YaoB Q, ZhaoB R, et al.. High repetition rate 102 W middle infrared ZnGeP2 master oscillator power amplifier system with thermal lens compensation[J]. Opticsletters, 2019, 44(3):715-718

[11]

AdamsJ J, BibeauC, PageR H, et al.. 4.0-45-µm lasing of Fe: ZnSe below 180K, a new mid-infrared laser material[J]. Optics letters, 1999, 24(23):1720-1722

[12]

EvansJ W, BerryP A, ScheplerK L. 840 mW continuous-wave Fe: ZnSe laser operating at 4140 nm[J]. Optics letters, 2012, 37(23):5021-5023

[13]

FrolovM P, KorostelinY V, KozlovskyV I, et al.. 3 J pulsed Fe: ZnS laser tunable from 3.44 to 4.19 µm[J]. Laser physics letters, 2015, 12(5):055001

[14]

FedorovV, MartyshkinD, KarkiK, et al.. Q-switched and gain-switched Fe: ZnSe lasers tunable over 3.60–5.15 µm[J]. Optics express, 2019, 27(10): 13934-13941

[15]

KernalJ, FedorovV V, GallianA, et al.. 3.9-4.8 µm gain-switched lasing of Fe: ZnSe at room temperature[J]. Optics express, 2005, 13(26):10608-10615

[16]

MyoungN S, MartyshkinD V, FedorovV V, et al.. Energy scaling of 4.3 µm room temperature Fe: ZnSe laser[J]. Optics letters, 2011, 36(1):94-96

[17]

LiE, UeharaH, YaoW, et al.. High-efficiency continuous wave Fe: ZnSe mid-IR laser end pumped by an Er: YAP laser[J]. Optics express, 2021, 29(26):44118-44128

[18]

AntonovV A, BukinV V, DolmatovT V, et al.. Single-nanosecond-pulse lasing in heavily doped Fe: ZnSe[J]. IEEE photonics journal, 2021, 13(1):150087

[19]

FirsovK N, GavrishchukE M, IkonnikovV B, et al.. High-energy room-temperature Fe2+: ZnS laser[J]. Laser physics letters, 2016, 13: 015001

[20]

LiY Y, YangK, LiuG Y, et al.. A 1 kHz Fe: ZnSe laser gain-switched by a ZnGeP2 optical parametric oscillator at 77 K[J]. Chinese physics letters, 2019, 36(7): 074201

[21]

PotemkinF, BravyB, KozlovskyV, et al.. Toward a sub-terawatt mid-IR (4-5 µm) femtosecond hybrid laser system based on parametric seed pulse generation and amplification in Fe2+: ZnSe[J]. Laser physics letters, 2016, 13: 015401

[22]

MartyshkinD, KarkiK, FedorovV, et al.. Room temperature, nanosecond, 60 mJ/pulse Fe: ZnSe master oscillator power amplifier system operating at 3.8–5.0 µm[J]. Optics express, 2021, 29(2): 2387-2393

[23]

ZhuX, JainR. Numerical analysis and experimental results of high power Er/Pr: ZBLAN 2.7 µm fiber lasers with different pumping designs[J]. Applied optics, 2006, 45: 7118-7125

[24]

PushkinA V, MigalE A, UeharaH, et al.. Compact, highly efficient, 2.1-W continuous-wave mid-infrared Fe: ZnSe coherent source, pumped by an Er: ZBLAN fiber laser[J]. Optics letters, 2018, 43(24):5941-5944

[25]

ShenY, WanY, WangY, et al.. 3.8 µm continuous-wave all solid-state Fe: ZnSe laser[J]. Chinese journal of lasers, 2023, 50(14):1401005(in Chinese)

[26]

UeharaH, TsunaiT, HanB, et al.. 40 kHz, 20 ns acousto-optically Q-switched 4 µm Fe: ZnSe laser pumped by a fluoride fiber laser[J]. Optics letters, 2020, 45(10): 2788-2791

[27]

PanQ, ChenF, XieJ, et al.. Theoretical study of the characteristics of a continuous wave iron-doped ZnSe laser[J]. Laser physics, 2018, 28(3):035002

[28]

FedorovV V, MirovS B, GallianA, et al.. 3.77-5.05 µm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures[J]. IEEE journal ofquantumelectronics, 2006, 42(9): 907-917

[29]

JacksonS D, KingT A, PollnauM. Modelling of high-power diode-pumped erbium 3 µm fibre lasers[J]. Journal of modern optics, 2000, 47(11):1987-1994

[30]

ShenY, WangY, LuanK, et al.. High peak power actively Q-switched mid-infrared fiber lasers at 3 µm[J]. Applied physics B: lasers and optics, 2017, 123(105):1-6

[31]

FrolovM P, KorostelinY V, KozlovskyV I, et al.. High-energy thermoelectric cooled Fe: ZnSe laser tunable over 3.75–4.82µm[J]. Optics letters, 2018, 43(3):623-626

AI Summary AI Mindmap
PDF

94

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/