Particle motion trajectory tracking based on fiber optic tweezers

Cun Zhao, Taiji Dong, Bingkun Gao, Xu Liu, Zihua Zhang

Optoelectronics Letters ›› 2023, Vol. 19 ›› Issue (8) : 462-467.

Optoelectronics Letters ›› 2023, Vol. 19 ›› Issue (8) : 462-467. DOI: 10.1007/s11801-023-2215-x
Article

Particle motion trajectory tracking based on fiber optic tweezers

Author information +
History +

Abstract

A biosensor based on single-fiber optical tweezers is proposed, which can detect the motion trajectory of cells based on the stable capture and transmission of silica microspheres as well as biological yeast cells by using a tapered optical fiber as a sensing element. The interference cavity is formed by using the fiber tip and the target particle, the detected interference signal is demodulated using Hilbert transform, and the displacement curve of the particle is plotted to realize the particle motion trajectory tracking. This method provides potential technical support for process monitoring of targeted drug delivery in biomedicine.

Cite this article

Download citation ▾
Cun Zhao, Taiji Dong, Bingkun Gao, Xu Liu, Zihua Zhang. Particle motion trajectory tracking based on fiber optic tweezers. Optoelectronics Letters, 2023, 19(8): 462‒467 https://doi.org/10.1007/s11801-023-2215-x

References

[1]
ZhaoX T, ZhaoN, ShiY, et al.. Optical fiber tweezers: a versatile tool for optical trapping and ma-nipulation[J]. Micromachines, 2020, 11(2):114
CrossRef Google scholar
[2]
NortonN M, FischerK J. Effects of micropipette handle diameter and inclusion of finger rest on basilar thumb joint contact mechanics[J]. Medical engineering & physics, 2023, 111: 103940
CrossRef Google scholar
[3]
WeinsteinT, GilonH, FilcO, et al.. Automated manipulation of miniature objects underwater using air capillary bridges: pick-and-place, surface cleaning, and underwater origami[J]. ACS applied materials & interfaces, 2022, 14(7): 9855-9863
CrossRef Google scholar
[4]
XiaF Z, Youcef-ToumiK. Review: advanced atomic force microscopy modes for biomedical research[J]. Biosensors, 2022, 12(12):1116
CrossRef Google scholar
[5]
GaoB K, ZhongH, YanB, et al.. Combined single/dual fiber optical trapping for flexible particle manipulation[J]. Optics and lasers in engineering, 2023, 161: 107373
CrossRef Google scholar
[6]
LiberaleC, MinzioniP, BragheriF, et al.. Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation[J]. Nature photonics, 2007, 1(12): 723-727
CrossRef Google scholar
[7]
WuH, JiangC L, TianS P, et al.. Multifunctional single-fiber optical tweezers for particle trapping and transport[J]. Chinese optics letters, 2022, 20(12):121201
CrossRef Google scholar
[8]
LiuZ, GuoC, YangJ, et al.. Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application[J]. Optics express, 2006, 14(25): 12510-12516
CrossRef Google scholar
[9]
MohantyS K, MohantyK, BernsM W J J O B O. Manipulation of mammalian cells using a single-fiber optical microbeam[J]. Journal of biomedical optics, 2008, 13(5):054049-054049-7
CrossRef Google scholar
[10]
ZhangY X, WangC, ZhangY, et al.. Single fiber optical tweezer for particles multi-dimensional arrangement[J]. Journal of lightwave technology, 2022, 40(4):1144-1149
CrossRef Google scholar
[11]
ZhangX T, YuanT T, YangS T, et al.. Optical trajectory transport device based on a three-core fiber[J]. Optics & laser technology, 2021, 140: 107076
CrossRef Google scholar
[12]
PryamikovA, HadzievskiL, FedorukM, et al.. Optical vortices in waveguides with discrete and continuous rotational symmetry[J]. Journal of the European Optical Society-rapid publications, 2021, 17: 1-28
CrossRef Google scholar
[13]
ZhangZ, LiC, HuangZ J O C. Vibration measurement based on multiple Hilbert transform for self-mixing interferometry[J]. Optics communications, 2019, 436: 192-196
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/