Numerical analysis of a Kretschmann surface plasmon resonance sensor with silver/TiO2/BaTiO3/silver/graphene for refractive index sensing

Huda A. Zain , Malathy Batumalay , Hazli R. A. Rahim , Sulaiman Wadi Harun

Optoelectronics Letters ›› 2023, Vol. 19 ›› Issue (10) : 583 -586.

PDF
Optoelectronics Letters ›› 2023, Vol. 19 ›› Issue (10) : 583 -586. DOI: 10.1007/s11801-023-2209-8
Article

Numerical analysis of a Kretschmann surface plasmon resonance sensor with silver/TiO2/BaTiO3/silver/graphene for refractive index sensing

Author information +
History +
PDF

Abstract

The sensitivity of a Kretschmann surface plasmon resonance (SPR) sensor was analyzed. The Kretschmann setup had multiple layers, a BK7 prism, silver, barium titanate (BaTiO3), titanium dioxide (TiO2), and graphene. The BaTiO3 and TiO2 coatings were sandwiched between two silver layers. The sensitivity of 260°/RIU has been achieved. The graphene layers are added to the configuration to improve sensitivity and as a bio-compatibility agent. This configuration can be used for biochemical sensors.

Cite this article

Download citation ▾
Huda A. Zain, Malathy Batumalay, Hazli R. A. Rahim, Sulaiman Wadi Harun. Numerical analysis of a Kretschmann surface plasmon resonance sensor with silver/TiO2/BaTiO3/silver/graphene for refractive index sensing. Optoelectronics Letters, 2023, 19(10): 583-586 DOI:10.1007/s11801-023-2209-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

HanL, DingH, LandryN N A, et al.. Highly sensitive SPR sensor based on Ag-ITO-blueP/TMDCs-graphene heterostructure[J]. Plasmonics, 2020, 15(5):1489-1498

[2]

LambertA S, ValiulisS N, MalinickA S, et al.. Plasmonic biosensing with aluminum thin films under the Kretschmann configuration[J]. Analytical chemistry, 2020, 92(13):8654-8659

[3]

PatilP O, PandeyG R, PatilA G, et al.. Graphene-based nanocomposites for sensitivity enhancement of surface plasmon resonance sensor for biological and chemical sensing: a review[J]. Biosens bioelectron, 2019, 139: 111324

[4]

TianM, HuangY, LiC, et al.. High-performance humidity sensor based on a micro-nano fiber Bragg grating coated with graphene oxide[J]. Optics express, 2020, 28(18):26395-26406

[5]

FIRDOUS S, ANWAR S, RAFYA R. Development of surface plasmon resonance (SPR) biosensors for use in the diagnostics of malignant and infectious diseases[J]. Laser physics letters, 2018, 15(6).

[6]

SinghP. SPR biosensors: historical perspectives and current challenges[J]. Sensors and actuators B: chemical, 2016, 229: 110-130

[7]

DAS C M, GUO Y, KANG L, et al. Investigation of plasmonic detection of human respiratory virus[J]. Advanced theory and simulations, 2020: 2000074.

[8]

HOMOLA J. Electromagnetic theory of surface plasmons[J]. Surface plasmon resonance based sensors, 2006: 3–44.

[9]

KUMAR A, YADAV A K, KUSHWAHA A S, et al. A comparative study among WS2, MoS2 and graphene based surface plasmon resonance (SPR) sensor[J]. Sensors and actuators reports, 2020, 2(1).

[10]

MenonP S, JamilN A, MeiG S, et al.. Multilayer CVD-graphene and MoS2 ethanol sensing and characterization using Kretschmann-based SPR[J]. IEEE journal of the electron devices society, 2020, 8: 1227-1235

[11]

HeL, PagneuxQ, LarrouletI, et al.. Label-free femtomolar cancer biomarker detection in human serum using graphene-coated surface plasmon resonance chips[J]. Biosensors and bioelectronics, 2017, 89: 606-611

[12]

GangwarR K, AmorimV A, MarquesP V S. High performance titanium oxide coated D-shaped optical fiber plasmonic sensor[J]. IEEE sensors journal, 2019, 19(20):9244-9248

[13]

BallJ P, MoundB A, NinoJ C, et al.. Biocompatible evaluation of barium titanate foamed ceramic structures for orthopedic applications[J]. Journal of biomedical materials research part A, 2014, 102(7):2089-2095

[14]

SunP, WangM, LiuL, et al.. Sensitivity enhancement of surface plasmon resonance biosensor based on graphene and barium titanate layers[J]. Applied surface science, 2019, 475: 342-347

[15]

RohS, ChungT, LeeB. Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors[J]. Sensors (Basel), 2011, 11(2):1565-1588

[16]

SharmaN K, YadavS, SajalV. Theoretical analysis of highly sensitive prism based surface plasmon resonance sensor with indium tin oxide[J]. Optics communications, 2014, 318: 74-78

[17]

BrahmachariK, RayM. Effect of prism material on design of surface plasmon resonance sensor by admittance loci method[J]. Frontiers of optoelectronics, 2013, 6(2):185-193

[18]

PrabowoB A, PurwidyantriA, LiuK C. Surface plasmon resonance optical sensor: a review on light source technology[J]. Biosensors (Basel), 2018, 8(3):80

[19]

NguyenH H, ParkJ, KangS, et al.. Surface plasmon resonance: a versatile technique for biosensor applications[J]. Sensors (Basel, Switzerland), 2015, 15(5): 10481-10510

[20]

CaiH, ShanS, WangX. High sensitivity surface plasmon resonance sensor based on periodic multilayer thin films[J]. Nanomaterials, 2021, 11(12): 3399

[21]

PalA, JhaA. A theoretical analysis on sensitivity improvement of an SPR refractive index sensor with graphene and barium titanate nanosheets[J]. Optik, 2021, 231: 166378

[22]

UDDIN S M A, CHOWDHURY S S, KABIR E. Numerical analysis of a highly sensitive surface plasmon resonance sensor for SARS-CoV-2 detection[J]. Plasmonics, 2021: 1–13.

[23]

YAO Q, REN G, XU K, et al. 2D plasmonic tungsten oxide enabled ultrasensitive fiber optics gas sensor[J]. Advanced optical materials, 2019, 7(24).

[24]

DE OLIVEIRA H J B, MARTINS FILHO J F, DO NASCIMENTO J F. Computational modeling of H2S gas sensor using surface plasmon resonance in a D-shaped optical fiber[J]. 2018 SBFoton International Optics and Photonics Conference (SBFoton IOPC), October 8–10, 2018, Campinas, Brazil. New York: IEEE, 18403526.

AI Summary AI Mindmap
PDF

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/