Discrimination of maleic hydrazide polymorphs using terahertz spectroscopy and density functional theory

Zhuanping Zheng, Shuaiyu Zhao, Yuhang Liu, Jiamin Gong

Optoelectronics Letters ›› 2023, Vol. 19 ›› Issue (8) : 493-497.

Optoelectronics Letters ›› 2023, Vol. 19 ›› Issue (8) : 493-497. DOI: 10.1007/s11801-023-2205-z
Article

Discrimination of maleic hydrazide polymorphs using terahertz spectroscopy and density functional theory

Author information +
History +

Abstract

The terahertz (THz) absorptions of maleic hydrazide polymorphs (MH2 and MH3) have been measured utilizing terahertz time-domain spectroscopy (THz-TDS). MH2 and MH3 have displayed totally different THz absorption features compared to their basically identical infrared spectral peaks. Experimental THz spectrum of MH2 showed six distinct absorption features while MH3 demonstrated five characteristic absorption peaks in the range of 10–160 cm−1. Spectral interpretation has been carried out in the framework of density functional theory (DFT) using periodic unit cell models. The simulation yields a good quality with respect to the measured features. Further analysis into the mode of vibration showed that the low-frequency THz spectral features (<112 cm−1) are contributed by intermolecular interactions mediated by in-plane/out-of-plane collective vibrations. The varied intermolecular interactions and crystal habits are the primarily reason for the THz spectral differences of MH2 and MH3.

Cite this article

Download citation ▾
Zhuanping Zheng, Shuaiyu Zhao, Yuhang Liu, Jiamin Gong. Discrimination of maleic hydrazide polymorphs using terahertz spectroscopy and density functional theory. Optoelectronics Letters, 2023, 19(8): 493‒497 https://doi.org/10.1007/s11801-023-2205-z

References

[1]
MaY, HuangH, HaoS, et al.. Insights into the water status in hydrous minerals using terahertz time-domain spectroscopy[J]. Scientific reports, 2019, 9(1):9265
CrossRef Google scholar
[2]
TengY. 120 GHz on-chip multi-mode wideband dielectric resonator antennas for THz applications[J]. Optoelectronics letters, 2020, 16(3): 166-170
CrossRef Google scholar
[3]
PecciantiM, FastampaR, ConteA M, et al.. Terahertz absorption by cellulose: application to ancient paper artifacts[J]. Physical review applied, 2017, 7(6):064019
CrossRef Google scholar
[4]
ShenY C, YangX Y, ZhangZ J. Broadband terahertz time-domain spectroscopy and fast FMCW imaging: principle and applications[J]. Chinese physics B, 2020, 29(7): 078705
CrossRef Google scholar
[5]
ZhuZ, BianY, ZhangX, et al.. Terahertz spectroscopy of temperature-induced transformation between glutamic acid, pyroglutamic acid and racemic pyroglutamic acid[J]. Spectrochimica acta part A: molecular and biomolecular spectroscopy, 2022, 275: 121150
CrossRef Google scholar
[6]
BianY, ZhangX, ZhuZ, et al.. Vibrational modes optimization and terahertz time-domain spectroscopy of L-Lysine and L-Lysine hydrate[J]. Journal of molecular structure, 2021, 1232: 129952
CrossRef Google scholar
[7]
WangP, ZhaoJ, ZhangY, et al.. The fingerprints of nifedipine/isonicotinamide cocrystal polymorph studied by terahertz time-domain spectroscopy[J]. International journal of pharmaceutics, 2022, 620: 121759
CrossRef Google scholar
[8]
DavisM P, KorterT M. Low-frequency vibrational spectroscopy and quantum mechanical simulations of the crystalline polymorphs of the antiviral drug ribavirin[J]. Molecular pharmaceutics, 2022, 19(9): 3385-3393
CrossRef Google scholar
[9]
ZhengZ P, LiA D, LiC Y, et al.. Terahertz time-domain spectral study of paracetamol[J]. Spectroscopy and spectral analysis, 2021, 41(12):3660-3664
[10]
ZhangB, LiS, WangC, et al.. Terahertz spectroscopic investigation of gallic acid and its monohydrate[J]. Spectrochimica acta part A: molecular and biomolecular spectroscopy, 2018, 190: 40-46
CrossRef Google scholar
[11]
CradwickP D. On the calculation of one-dimensional X-ray scattering from interstratified material[J]. Clay minerals, 1975, 10(5):347-356
CrossRef Google scholar
[12]
CRADWICK P D. Crystal structure of the growth inhibitor, ‘maleic hydrazide’ (1, 2-dihydropyridazine-3, 6-dione)[J]. Journal of the chemical society, perkin transactions 2, 1976, (12): 1386–1389.
[13]
KatrusiakA. A new polymorph of maleic hydrazide[J]. Acta crystallographica section C: crystal structure communications, 1993, 49(1):36-39
[14]
KatrusiakA. IPolymorphism of maleic hydrazide. [J]. Acta crystallographica section B: structural science, 2001, 57(5):697-704
CrossRef Google scholar
[15]
HofmannH J, CimiragliaR, TomasiJ, et al.. Structure and tautomerism of maleic hydrazide[J]. Journal of molecular structure: theochem, 1991, 227: 321-326
CrossRef Google scholar
[16]
Morzyk-OciepaB. X-ray crystal structure and vibrational spectra of hydrazides and |their metal complexes. Part I. Catena-poly [di-μ-aqua-(μ-maleic hydrazidato-O) sodium] hydrate[J]. Journal of molecular structure, 2007, 833(1–3):121-132
CrossRef Google scholar
[17]
QuF, PanY, LinL, et al.. Experimental and theoretical study on terahertz absorption characteristics and spectral de-noising of three plant growth regulators[J]. Journal of infrared, millimeter, and terahertz waves, 2018, 39(10):1015-1027
CrossRef Google scholar
[18]
ZhengZ P, LiA D, DongJ, et al.. Terahertz spectroscopic investigation of maleic hydrazide polymorphs[J]. Spectroscopy and spectral analysis, 2022, 42(04):1104-1108
[19]
PerdewJ P, BurkeK, ErnzerhM. Generalized gradient approximation made simple[J]. Physical review letters, 1996, 77(18):3865
CrossRef Google scholar
[20]
TroullierN, MartinsJ L. Efficient pseudopotentials for plane-wave calculations[J]. Physical review B, 1991, 43(3): 1993
CrossRef Google scholar
[21]
TakahashiM, OkamuraN, FanX, et al.. Temperature dependence in the terahertz spectrum of nicotinamide: anharmonicity and hydrogen-bonded network[J]. The journal of physical chemistry A, 2017, 121(13): 2558-2564
CrossRef Google scholar
[22]
SteinerT. The hydrogen bond in the solid state[J]. Angewandte chemie international edition, 2002, 41(1):48-76
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/