Effect of growth interruption time on the quality of InAs/GaSb type-II superlattice grown by molecular beam epitaxy

Zhaojun Liu , Lianqing Zhu , Xiantong Zheng , Lidan Lu , Dongliang Zhang , Yuan Liu

Optoelectronics Letters ›› 2023, Vol. 19 ›› Issue (3) : 155 -158.

PDF
Optoelectronics Letters ›› 2023, Vol. 19 ›› Issue (3) : 155 -158. DOI: 10.1007/s11801-023-2196-9
Article

Effect of growth interruption time on the quality of InAs/GaSb type-II superlattice grown by molecular beam epitaxy

Author information +
History +
PDF

Abstract

We systematically investigate the influence of growth interruption time on the properties of InAs/GaSb type-II super-lattices (T2SLs) epitaxial materials grown by molecular beam epitaxy (MBE). X-ray diffraction (XRD) and atomic force microscope (AFM) are used to characterize the material quality and morphology. The full width at half maximum (FWHM) of the XRD 0th satellite peaks ranges from 32″ to 41″, and the root mean square (RMS) roughness on a 5 µm×5 µm scan area is 0.2 nm. Photoluminescence (PL) test is used to reveal the influence of the growth interruption time on the optical property. Grazing incidence X-ray reflectivity (GIXRR) measurements are performed to analyze the roughness of the interface. The interface roughness (0.24 nm) is optimal when the interruption time is 0.5 s. The crystal quality of T2SLs can be optimized with appropriate interruption time by MBE, which is a guide for the material epitaxy of high performance T2SL infrared detector.

Cite this article

Download citation ▾
Zhaojun Liu, Lianqing Zhu, Xiantong Zheng, Lidan Lu, Dongliang Zhang, Yuan Liu. Effect of growth interruption time on the quality of InAs/GaSb type-II superlattice grown by molecular beam epitaxy. Optoelectronics Letters, 2023, 19(3): 155-158 DOI:10.1007/s11801-023-2196-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

JasikA, SankowskaI, PierścińskaD, et al.. Blueshift of bandgap energy and reduction of non-radiative defect density due to precise control of InAs-on-GaSb interface in type-II InAs/GaSb superlattice[J]. Journal of applied physics, 2011, 110(12):123103

[2]

KleinB, NutanG, ElenaP, et al.. Carrier lifetime studies in midwave infrared type-II InAs/GaSb strained layer superlattice[J]. Journal of vacuum science & technology B, 2014, 32(2): 02C101

[3]

ALSHAHRANI D O, KESARIA M, ANYEBE E A, et al. Emerging type-II superlattices of InAs/InAsSb and InAs/GaSb for mid-wavelength infrared photodetectors[J]. Advanced photonics research, 2021, 3(2).

[4]

RodriguezJ B, ChristolP, CeruttiL, et al.. MBE growth and characterization of type-II InAs/GaSb superlattices for mid-infrared detection[J]. Journal of crystal growth, 2005, 274(1–2): 6-13

[5]

MagriR, ZungerA. Effects of interfacial atomic segregation and intermixing on the electronic properties of InAs/GaSb superlattices[J]. Physical review B, 2002, 65(16):5302

[6]

LiH, ZhangQ, QiX, et al.. High resolution X-ray diffraction study in InAs/GaSb superlattice[J]. Ferroelectrics, 2022, 596(1): 86-94

[7]

YuH L, WuH Y, ZhuH J, et al.. Molecular beam epitaxy of zero lattice-mismatch InAs/GaSb type-II superlattice[J]. Chinese physics letters, 2016, 33(12):128103

[8]

SuD H, XuY, WangW X, et al.. Growth control of high-performance InAs/GaSb type-II superlattices via optimizing the In/Ga beam-equivalent pressure ratio[J]. Chinese physics letters, 2020, 37(3): 037301

[9]

WeiY, MaW Q, ZhangY H, et al.. High structural quality of type II InAs/GaSb superlattices for very long wavelength infrared detection by interface control[J]. IEEE journal of quantum electronics, 2012, 48(4): 512-515

[10]

LiB, NiuY X, FengY D, et al.. Ultra-low dark count InGaAs/InP single photon avalanche diode[J]. Optoelectronics letters, 2022, 18(11):647-650

[11]

LiX C, JiangD W, ZhangY, et al.. Interface optimization and fabrication of InAs/GaSb type II superlattice for very long wavelength infrared photodetectors[J]. Superlattices and microstructures, 2016, 91: 238-243

[12]

LIU Y F, ZHANG C J, WANG X B, et al. Interface investigation of InAs/GaSb type II superlattice for long wavelength infrared photodetectors[J]. Infrared physics & technology, 2021, 113.

[13]

XuZ C, ChenJ X, WangF F, et al.. Interface layer control and optimization of InAs/GaSb type-II superlattices grown by molecular beam epitaxy[J]. Journal of crystal growth, 2014, 386: 220-225

[14]

DelmasM, DebnathM C, LiangB L, et al.. Material and device characterization of type-II InAs/GaSb superlattice infrared detectors[J]. Infrared physics & technology, 2018, 94: 286-290

[15]

QiaoP F, MouS, ChuangS L. Electronic band structures and optical properties of type-II superlattice photodetectors with interfacial effect[J]. Optics express, 2012, 20(3):2319-2334

[16]

LiC L, FangD, ZhangJ, et al.. Surface morphologies of InAs/GaSb type-II superlattice materials obtained via growth interruption method[J]. Acta optica sinica, 2019, 39(9):286-290(in Chinese)

[17]

JiangJ K, LiY, ChangF R, et al.. MBE growth of mid-wavelength infrared photodetectors based on high quality InAs/AlAs/InAsSb superlattice[J]. Journal of crystal growth, 2021, 564(15): 126109

[18]

LiuZ J, ZhuL Q, ZhengX T, et al.. Interface effect on superlattice quality and optical properties of InAs/GaSb type-II superlattices grown by molecular beam epitaxy[J]. Chinese physics B, 2022, 31: 128503

[19]

ShaoJ, LuW, LuX, et al.. Modulated photoluminescence spectroscopy with a step-scan Fourier transform infrared spectrometer[J]. Review of scientific instruments, 2006, 77: 063104

AI Summary AI Mindmap
PDF

166

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/