Implementation of quantum optical tristate CNOT gate using frequency encoding principle with a semiconductor optical amplifier

Snigdha Hazra , Sourangshu Mukhopadhyay

Optoelectronics Letters ›› 2023, Vol. 19 ›› Issue (5) : 269 -273.

PDF
Optoelectronics Letters ›› 2023, Vol. 19 ›› Issue (5) : 269 -273. DOI: 10.1007/s11801-023-2195-x
Article

Implementation of quantum optical tristate CNOT gate using frequency encoding principle with a semiconductor optical amplifier

Author information +
History +
PDF

Abstract

Controlled NOT (CNOT) gate is well known because of its several advantages in quantum computing and information processing. In the area of quantum computing, several methods of CNOT gates were established in last few years. In this paper, we propose a new approach of implementation of tristate CNOT operation with light as information carrying signal. To do this, the frequency encoding method has been exploited for successful realization of the CNOT gate with light.

Cite this article

Download citation ▾
Snigdha Hazra, Sourangshu Mukhopadhyay. Implementation of quantum optical tristate CNOT gate using frequency encoding principle with a semiconductor optical amplifier. Optoelectronics Letters, 2023, 19(5): 269-273 DOI:10.1007/s11801-023-2195-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

MukhopadhyayS. Role of optics in super-fast information processing[J]. Indian journal of physics, 2010, 84(8):1069-1074

[2]

FisherK, BroadbentA, ShalmL, et al.. Quantum computing on encrypted data[J]. Nature communications, 2014, 5: 3074

[3]

MUKHOPADHYAY S, DEY S, SAHA S. Photonics: a dream of modern technology[M]//GANGOPADHYAY T K, KUMBHAKAR P, MANDAL M K. Photonics and fiber optics: foundations and applications. CRC Press, 2019: 28.

[4]

ConnellyM J. Semiconductor optical amplifiers[M], 2007, 1st ed.New York, Springer: 127-165

[5]

DuttaN K, WangQ, ZhuG, et al.. Semiconductor optical amplifiers-functional applications[J]. Journal of optics, 2015, 33(4):197-219

[6]

DuttaS, MukhopadhyayS. An all optical approach of frequency encoded NOT based latch using semiconductor optical amplifier[J]. Journal of optics, 2010, 39: 39-45

[7]

MANDAL M, GOSWAMI I, MUKHOPADHYAY S. Implementation of programmable photonic one qubit quantum gates using intensity and phase encoding jointly[J]. Journal of optics, 2022.

[8]

DeyS, MukhopadhyayS. Implementation of alloptical Pauli-Y gate by the integrated phase and polarisation encoding[J]. IET optoelectronics, 2018, 12: 176-179

[9]

SarkarB, MukhopadhyayS. An all-optical scheme for implementing an integrated Pauli’s X, Y and Z quantum gates with optical switches[J]. Journal of optics, 2017, 46: 143-148

[10]

SARKAR B, MUKHOPADHYAY S. An all-optical system for implementing integrated Hadamard-Pauli quantum logic[J]. Journal of optical communications, 2019.

[11]

SarfarajM N, MukhopadhyayS. All-optical scheme for implementation of tri-state Pauli-X, Y and Z quantum gates using phase encoding[J]. Optoelectronics letters, 2021, 17: 746-750

[12]

DeyS, DeP, MukhopadhyayS. An all-optical implementation of Fredkin gate using Kerr effect[J]. Optoelectronics letters, 2019, 15: 317-320

[13]

DeyS, MukhopadhyayS. All-optical high frequency clock pulse generator using the feedback mechanism in Toffoli gate with Kerr material[J]. Journal of nonlinear optical physics & materials, 2016, 25(01):1650012

[14]

HuJ, HuangY P, KumarP. Self-stabilized quantum optical Fredkin gate[J]. Optics letters, 2013, 38(4): 522-524

[15]

ZhuM, YeL. Implementation of swap gate and Fredkin gate using linear optical elements[J]. International journal of quantum information, 2013, 11(03):1350031

[16]

FedorovA, SteffenL, BaurM, et al.. Implementation of a Toffoli gate with superconducting circuits[J]. Nature, 2012, 481: 170-172

[17]

AndrianovS N, KalachevA A, ShindyaevO P. Controlled-NOT gate for frequency-encoded qubits based on six-wave mixing[J]. Laser physics, 2018, 28: 125204

[18]

PooleyM A, EllisD J P, PatelR B, et al.. Controlled NOT gate operating with single photons[J]. Applied physics letters, 2012, 100: 211103

[19]

LopesJ H, SoaresW C, BernardoB, et al.. Linear optical CNOT gate with orbital angular momentum and polarization[J]. Quantum information processing, 2019, 18: 256

[20]

BiswasK K, SajeedS. Design and realization of a quantum controlled NOT gate using optical implementation[J]. International journal of advancements in research & technology, 2012, 1(1):2278

[21]

CrespiA, RamponiR, OsellameR, et al.. Integrated photonic quantum gates for polarization qubits[J]. Nature communications, 2011, 2: 566

[22]

SAMANTA D. Implementation of a polarization-encoded quantum CNOT gate[J]. Journal of optical communications, 2022.

[23]

DeyS, MukhopadhyayS. Approach of implementing phase encoded quantum square root of NOT gate[J]. Electronics letters, 2017, 53: 1375-1377

[24]

MathaiasS, MillerD M, RolfD. Quantum circuits employing roots of the Pauli matrices[J]. Physical review A, 2013, 88(4):042322

[25]

MandalM, MukhopadhyayS. Photonic scheme for implementing quantum square root controlled Z gate using phase and intensity encoding of light[J]. IET optoelectronics, 2021, 15: 52-60

[26]

DeyS, MukhopadhyayS. All-optical integrated square root of Pauli-Z (SRZ) gates using polarization and phase encoding[J]. Journal of optics, 2019, 48: 520-526

[27]

HazraS, MukhopadhyayS. AcharyyaA, BiswasA, InokawaH. An alternative scheme of quantum optical superfast tristate CNOT gate using frequency encoding principle of light with semiconductor optical amplifier[M]. New horizons in millimeter-wave, infrared and terahertz technologies, 2022, Singapore, Springer: 187-196

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/