Structural, electrochemical and cycling properties of Nb5+ doped LiNi0.8Co0.1Mn0.1O2 cathode materials at different calcination temperatures for lithium-ion batteries

Jiangchao Wang , Yuming Xue , Hongli Dai , Luoxin Wang , Jiuchao Zhang , Zhaoshuo Hu

Optoelectronics Letters ›› 2023, Vol. 19 ›› Issue (9) : 548 -555.

PDF
Optoelectronics Letters ›› 2023, Vol. 19 ›› Issue (9) : 548 -555. DOI: 10.1007/s11801-023-2170-6
Article

Structural, electrochemical and cycling properties of Nb5+ doped LiNi0.8Co0.1Mn0.1O2 cathode materials at different calcination temperatures for lithium-ion batteries

Author information +
History +
PDF

Abstract

LiNi0.8Co0.1Mn0.1O2 cathode material is prepared by sol-gel method and the effects of Nb5+ doping and different calcination temperatures on cathode materials were deeply investigated. Structural and morphological characterizations revealed that the optimal content of 1 mol% Nb5+ can stabilize layered structures, mitigate Ni2+ migration to Li layers, improve lithium diffusion capacity, and reduce lattice expansion/shrinkage while cycling. And calcination temperature at 800 °C can not only ensure good morphology, but also suppress the mixed discharge of lithium and nickel in the internal structure. Electrochemical performance evaluation revealed that Nb5+ doping improves the discharge-specific capacity of the material, which is conducive to ameliorating its rate capability and cycle performance. And the material at 800 °C exhibits the highest discharge specific capacity, the best magnification performance, low polarizability, and the best cycle reversibility.

Cite this article

Download citation ▾
Jiangchao Wang,Yuming Xue,Hongli Dai,Luoxin Wang,Jiuchao Zhang,Zhaoshuo Hu. Structural, electrochemical and cycling properties of Nb5+ doped LiNi0.8Co0.1Mn0.1O2 cathode materials at different calcination temperatures for lithium-ion batteries. Optoelectronics Letters, 2023, 19(9): 548-555 DOI:10.1007/s11801-023-2170-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

AI Summary AI Mindmap
PDF

0

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/