Simulation and optimization of dopant-free asymmetric heterojunction solar cells

Qiaoqiao Zheng , Yujie Yuan , Guofu Hou , Wei Li , Ke Tao , Zhuo Peng

Optoelectronics Letters ›› 2023, Vol. 19 ›› Issue (6) : 337 -346.

PDF
Optoelectronics Letters ›› 2023, Vol. 19 ›› Issue (6) : 337 -346. DOI: 10.1007/s11801-023-2159-1
Article

Simulation and optimization of dopant-free asymmetric heterojunction solar cells

Author information +
History +
PDF

Abstract

In order to further study doping-free asymmetric heterojunction (DASH) solar cells, we used AFORS-HET software to optimize the structure of Al/SnO2/a-Si:H (i)/c-Si (p)/a-Si:H (i)/NiOx/Ag. In a certain adjustment range, a series of simulations were carried out on the band gap, electron affinity, thickness and work function (WF) of NiOx, thickness and WF of SnO2, and the thickness of a-Si:H (i). After the above optimization, 21.08% efficiency was obtained at 300 K. This study shows that the solar cells with this structure have good light absorption properties in a very wide spectrum. The present simulation provides instructive suggestions for follow-up experiments of DASH solar cells.

Cite this article

Download citation ▾
Qiaoqiao Zheng, Yujie Yuan, Guofu Hou, Wei Li, Ke Tao, Zhuo Peng. Simulation and optimization of dopant-free asymmetric heterojunction solar cells. Optoelectronics Letters, 2023, 19(6): 337-346 DOI:10.1007/s11801-023-2159-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BullockJ, HettickM, GeissbühlerJ, et al.. Efficient silicon solar cells with dopant-free asymmetric heterocontacts[J]. Nature energy, 2016, 1(3):1-7

[2]

BattagliaC, YinX, ZhengM, et al.. Hole selective MoOx contact for silicon solar cells[J]. Nano letters, 2014, 14(2):967-971

[3]

BullockJ, WanY, XuZ, et al.. Stable dopant-free asymmetric heterocontact silicon solar cells with efficiencies above 20%[J]. ACS energy letters, 2018, 3(3):508-513

[4]

ZhongS, DreonJ, JeangrosQ, et al.. Mitigating plasmonic absorption losses at rear electrodes in high-efficiency silicon solar cells using dopant-free contact stacks[J]. Advanced functional materials, 2020, 30(5):1907840

[5]

HossainM I, HasanA K M, QaronyW, et al.. Electrical and optical properties of nickel-oxide films for efficient perovskite solar cells[J]. Small methods, 2020, 4(9): 2000454

[6]

NapariM, HuqT N, HoyeR L Z, et al.. Nickel oxide thin films grown by chemical deposition techniques: potential and challenges in next-generation rigid and flexible device applications[J]. InfoMat, 2020, 3(5): 536-576

[7]

GongY, ZhangS, GaoH, et al.. Recent advances and comprehensive insights on nickel oxide in emerging optoelectronic devices[J]. Sustainable energy & fuels, 2020, 4(9):4415-4458

[8]

SegalinaA, LebegueS, RoccaD, et al.. Structure and energetics of dye-sensitized NiO interfaces in water from Ab initio MD and large-scale GW calculations[J]. Journal of chemical theory and computation, 2021, 17(8):5225-5238

[9]

SajidS, ElsemanA M, HuangH, et al.. Breakthroughs in NiOx-HTMs towards stable, low-cost and efficient perovskite solar cells[J]. Nano energy, 2018, 51: 408-424

[10]

PantN, YanagidaM, ShiraiY, et al.. Effect of different surface treatments of sputtered NiOx on the photovoltaic parameters of perovskite solar cells: a correlation study[J]. Applied physics express, 2020, 13(2):025505

[11]

LeeY H, SongH E, KimK H, et al.. Investigation of surface reactions in metal oxide on Si for efficient heterojunction Si solar cells[J]. APL materials, 2019, 7(7): 071106

[12]

WangZ, LeeS H, KimD H, et al.. Effect of NiOx thin layer fabricated by oxygen-plasma treatment on polymer photovoltaic cell[J]. Solar energy materials and solar cells, 2010, 94(10): 1591-1596

[13]

SunH, ChenS C, HsuS W, et al.. Microstructures and optoelectronic properties of nickel oxide films deposited by reactive magnetron sputtering at various working pressures of pure oxygen environment[J]. Ceramics international, 2017, 43: S369-S375

[14]

JiangQ, ZhangX, YouJ. SnO2: a wonderful electron transport layer for perovskite solar cells[J]. Small, 2018, 14(31):1801154

[15]

XiongL, GuoY, WenJ, et al.. Review on the application of SnO2 in perovskite solar cells[J]. Advanced functional materials, 2018, 28(35): 1802757

[16]

DalapatiG K, SharmaH, GuchhaitA, et al.. Tin oxide for optoelectronic, photovoltaic and energy storage devices: a review[J]. Journal of materials chemistry A, 2021, 9(31): 16621-16684

[17]

WangD, LiuS, ShaoM, et al.. Design of SnO(2) aggregate/nanosheet composite structures based on function-matching strategy for enhanced dye-sensitized solar cell performance[J]. Materials (Basel), 2018, 11(9):1774

[18]

Oppong-AntwiL, HuangS, LiQ, et al.. Influence of defect states and fixed charges located at the a-Si: H/c-Si interface on the performance of HIT solar cells[J]. Solar energy, 2017, 141: 222-227

[19]

AhmmedS, AktarA, RahmanM F, et al.. A numerical simulation of high efficiency CdS/CdTe basedsolar cell using NiO HTL and ZnO TCO[J]. Optik, 2020, 223: 165625

[20]

ZhongS, HuaX, ShenW. Simulation of high-efficiency crystalline silicon solar cells with homo-hetero junctions[J]. IEEE transactions on electron devices, 2013, 60(7):2104-2110

[21]

BorahC K, TyagiP K, KumarS. The prospective application of a graphene/MoS2 heterostructure in Si-HIT solar cells for higher efficiency[J]. Nanoscale advances, 2020, 2(8):3231-3243

[22]

SteirerK X, NdioneP F, WidjonarkoN E, et al.. Enhanced efficiency in plastic solar cells via energy matched solution processed NiOx interlayers[J]. Advanced energy materials, 2011, 1(5):813-820

AI Summary AI Mindmap
PDF

164

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/