Micro-displacement sensor based on an asymmetric wavy multimode fiber interferometer

Yuanzheng Li , Yi Li , Yinping Miao , Fang Wang , Kai Hu , Kailiang Zhang

Optoelectronics Letters ›› 2023, Vol. 19 ›› Issue (3) : 134 -138.

PDF
Optoelectronics Letters ›› 2023, Vol. 19 ›› Issue (3) : 134 -138. DOI: 10.1007/s11801-023-2139-5
Article

Micro-displacement sensor based on an asymmetric wavy multimode fiber interferometer

Author information +
History +
PDF

Abstract

We proposed a compact and tunable multimode interferometer (MMI) based on an asymmetric wavy fiber (AMWF), which has axial offset, off-center taper waist, and micro-length. The fabrication process only contains non-axis pulling processes of single-mode fiber on two close positions. Theoretical qualitative analyses and experiments verify the tunable multimode propagation of the AMWF. Experimental results show a nonlinear wavelength response with increasing axis displacement from 0 to 120 µm. In the range of 0–10 µm, the sensitivity reaches the highest value of −1.33 nm/µm. Owing to its cost-effective, high-compact and tunable multimode propagation properties, the AMWF provides a promising platform for micro-nano photonic devices and optical sensing applications.

Cite this article

Download citation ▾
Yuanzheng Li, Yi Li, Yinping Miao, Fang Wang, Kai Hu, Kailiang Zhang. Micro-displacement sensor based on an asymmetric wavy multimode fiber interferometer. Optoelectronics Letters, 2023, 19(3): 134-138 DOI:10.1007/s11801-023-2139-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

YoungT. A course of lectures on natural philosophy and the mechanical arts V2[M], 1807, New York, Manhattan Rare Book Company

[2]

SmithT A, ShihY. Turbulence-free double-slit inter-ferometer[J]. Physical review letters, 2018, 120(6):063606

[3]

LiuT, PaglianoF, VeldhovenR V, et al.. Integrated nano-optomechanical displacement sensor with ultrawide optical bandwidth[J]. Nature communications, 2020, 11(1): 1-7

[4]

HuangL, XueJ, GaoB, et al.. One-dimensional angular-measurement-based stitching interferometry[J]. Optics express, 2018, 26(8):9882-9892

[5]

Marrujo-GarcíaS, Hernández-RomanoI, Torres-CisnerosM, et al.. Temperature-independent curvature sensor based on in-fiber Mach-Zehnder interferometer using hollow-core fiber[J]. Journal of lightwave technology, 2020, 38(15):4166-4173

[6]

Flores-BravoJ A, IllarramendiM A, ZubiaJ, et al.. Optical fiber interferometer for temperature-independent refractive index measuring over a broad range[J]. Optics & laser technology, 2021, 139: 106977

[7]

JiangC, LiuY, MouC, et al.. Fiber vector magnetometer based on polarization-maintaining fiber long-period grating with ferrofluid nanoparticles[J]. Journal of lightwave technology, 2022, 40(8):2494-2502

[8]

DuD, XuC, YangZ, et al.. Ultrasensitive temperature sensor and mode converter based on a modal interferometer in a two-mode fiber[J]. Optics express, 2021, 29(20):32135-32148

[9]

HuZ, ChenY, TanJ, et al.. A hybrid self-growing polymer microtip for ultracompact and fast fiber humidity sensing[J]. Sensors and actuators B: chemical, 2021, 346: 130462

[10]

LiL, ZhangY, ZhouY, et al.. Optical fiber optofluidic bio-chemical sensors: a review[J]. Laser & photonics reviews, 2021, 15(7):2000526

[11]

XiaF, ZhaoY, HuH, et al.. Optical fiber sensing technology based on Mach-Zehnder interferometer and orbital angular momentum beam[J]. Applied physics letters, 2018, 112(22): 221105

[12]

CuiJ, LiuZ, GunawardenaD S, et al.. Two-dimensional vector accelerometer based on Bragg gratings inscribed in a multi-core fiber[J]. Optics express, 2019, 27(15): 20848-20856

[13]

AzmiA I, AbdullahA S, NoorM Y M, et al.. Dynamic bending and rotation sensing based on high coherence interferometry in multicore fiber[J]. Optics & laser technology, 2021, 135: 106716.2

[14]

ZhongY, XuP, YangJ, et al.. Optical fiber interferometric humidity sensor by using hollow core fiber interacting with gelatin film[J]. Sensors, 2022, 22(12):4514

[15]

FarasatM, AalaeiE, KheiratiR S, et al.. Signal-based methods in dielectrophoresis for cell and particle separation[J]. Biosensors, 2022, 12(7): 510

[16]

GongP, WangY, ZhouX, et al.. In situ temperature-compensated DNA hybridization detection using a dual-channel optical fiber sensor[J]. Analytical chemistry, 2021, 93(30): 10561-10567

[17]

ZhuC, HuangJ. Sensitivity-enhanced microwave-photonic optical fiber interferometry based on the Vernier effect[J]. Optics express, 2021, 29(11):16820-16832

[18]

WeiF, LiuD, WangZ, et al.. Enhancing the visibility of Vernier effect in a tri-microfiber coupler fiber loop interferometer for ultrasensitive refractive index and temperature sensing[J]. Journal of lightwave technology, 2020, 39(5):1523-1529

[19]

YuanW, ZhaoQ, LiL, et al.. Simultaneous measurement of temperature and curvature using ring-core fiber-based Mach-Zehnder interferometer[J]. Optics express, 2021, 29(12):17915-17925

[20]

Alonso-MuriasM, Monzón-HernándezD, Antonio-LopezE, et al.. Hybrid optical fiber Fabry-Perot interferometer for nano-displacement sensing[J]. Optics & laser technology, 2022, 155: 108426

[21]

Filoteo-RazoJ D, Hernandez-GarciaJ C, Estudillo-AyalaJ M, et al.. Multi-wavelength Er-Yb-doped fibre ring laser using a double-pass Mach-Zehnder interferometer with a Sagnac interferometer[J]. Optics & laser technology, 2021, 139: 106994

[22]

ChenJ, ZhouJ, YuanX. M-Z interferometer constructed by two S-bend fibers for displacement and force measurements[J]. IEEE photonics technology letters, 2014, 26(8):837-840

[23]

YangR, YuY S, ChenC, et al.. S-tapered fiber sensors for highly sensitive measurement of refractive index and axial strain[J]. Journal of lightwave technology, 2012, 30(19):3126-3132

[24]

ShenC, WangY, ChuJ, et al.. Optical fiber axial micro-displacement sensor based on Mach-Zehnder in-terferometer[J]. Optics express, 2014, 22(26):31984-31992

[25]

LiC, NingT, ZhangC, et al.. All-fiber multipath Mach-Zehnder interferometer based on a four-core fiber for sensing applications[J]. Sensors and actuators A: physical, 2016, 248: 148-154

[26]

ZhangC, LuP, LiaoH, et al.. Simultaneous measurement of axial strain and temperature based on a Z-shape fiber structure[J]. IEEE photonics journal, 2017, 9(4):1-8

[27]

WuJ, MiaoY, SongB, et al.. Simultaneous measurement of displacement and temperature based on thin-core fiber modal interferometer[J]. Optics communications, 2015, 340: 136-140

AI Summary AI Mindmap
PDF

225

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/