Construction and performance analysis of variable weight zero cross correlation Latin square code for spectral amplitude coding OCDMA systems

Yan Liu, Chuanqi Li, Ye Lu

Optoelectronics Letters ›› 2023, Vol. 19 ›› Issue (1) : 41-48.

Optoelectronics Letters ›› 2023, Vol. 19 ›› Issue (1) : 41-48. DOI: 10.1007/s11801-023-2120-3
Article

Construction and performance analysis of variable weight zero cross correlation Latin square code for spectral amplitude coding OCDMA systems

Author information +
History +

Abstract

The selection of appropriate codes for an optical code division multiple access (OCDMA) network, which determines the maximum number of users and bit error rate (BER) supported by the system, is crucial. This study proposed a variable weight zero cross-correlation Latin square (VW-ZLS) code for spectral amplitude coding (SAC)-OCDMA systems, which offers high autocorrelation and zero cross-correlation, while providing differentiated quality of service (QoS) features. Using direct detection (DD) technology, the data rate of the proposed VW-ZLS code reached 4.8 Gbit/s under the condition that BER does not exceed 10−9. This was 0.5 Gbit/s higher than that of zero cross-correlation magic square variable weight optical orthogonal code (ZMS-VWOOC) with the same cross-correlation characteristics. Further, simulation results showed that in SAC-OCDMA system, the VW-ZLS code was better than ZMS-VWOOC and exhibited excellent performance.

Cite this article

Download citation ▾
Yan Liu, Chuanqi Li, Ye Lu. Construction and performance analysis of variable weight zero cross correlation Latin square code for spectral amplitude coding OCDMA systems. Optoelectronics Letters, 2023, 19(1): 41‒48 https://doi.org/10.1007/s11801-023-2120-3

References

[1]
Ghafouri-ShirazH, KarbassianM M. Optical CDMA networks: principles, analysis and applications[M], 2012, Chichester, John Wiley & Sons
CrossRef Google scholar
[2]
Abd El-MottalebS A, FayedH A, Abd El-AzizA, et al.. Enhanced spectral amplitude coding OCDMA system utilizing a single photodiode detection[J]. Applied sciences, 2018, 8(10):1861
CrossRef Google scholar
[3]
JiJ, ChenX, HuangQ. Performance analysis of FSO/CDMA system based on binary symmetric wiretap channel[J]. IET communications, 2019, 13(1): 116-123
CrossRef Google scholar
[4]
RahimianF, SeyedzadehS, GleskI. OCDMA-based sensor network for monitoring construction sites affected by vibrations[J]. Journal of information technology in construction, 2019, 24: 299
[5]
YangX, HaoL, WangH, et al.. Spatial and temporal multiplexing array imaging lidar technique based on OOCDMA[J]. Optics and lasers in engineering, 2020, 129: 106066
CrossRef Google scholar
[6]
ImtiazW A, AhmedH Y, ZeghidM, et al.. Analysis of noise suppression for OCDMA systems with fixed in-phase cross-correlation codes and single O/E converter[J]. Optik, 2019, 183: 677-690
CrossRef Google scholar
[7]
AlayediM, CherifiA, HamidaA F, et al.. Performance improvement of multi access OCDMA system based on a new zero cross correlation code[C], 2020, Bristol, IOP Publishing: 012042767 (1)
[8]
Abd El MottalebS A, FayedH A, Abd El AzizA, et al.. SAC-OCDMA system using different detection techniques[J]. IOSR journal of electronics and communication engineering, 2014, 9(2):55-60
CrossRef Google scholar
[9]
KavehradM, ZaccarinD. Optical code-division-multiplexed systems based on spectral encoding of noncoherent sources[J]. Journal of lightwave technology, 1995, 13(3):534-545
CrossRef Google scholar
[10]
DjordjevicI B, VasicB, RorisonJ. Multi-weight unipolar codes for multimedia spectral-amplitude-coding optical CDMA systems[J]. IEEE communications letters, 2004, 8(4):259-261
CrossRef Google scholar
[11]
PrucnaL, PaulR. Optical code division multiple access: fundamentals and applications[M], 2018, Montrouge, CRC Press
CrossRef Google scholar
[12]
WeiZ, Ghafouri-ShirazH. Proposal of a novel code for spectral amplitude-coding optical CDMA systems[J]. IEEE photonics technology letters, 2002, 14(3):414-416
CrossRef Google scholar
[13]
SalehiJ A. Code division multiple-access techniques in optical fiber networks[J]. IEEE transactions on communications, 1989, 37(8):824-833
CrossRef Google scholar
[14]
AldersonT L. N-dimensional optical orthogonal codes, bounds and optimal constructions[J]. Applicable algebra in engineering, communication and computing, 2019, 30(5):373-386
CrossRef Google scholar
[15]
BOUKRICHA S, BOUZIDI A, GHOUMID K, et al. Performance enhancement for m-sequence and Hadamard code SAC-OCDMA systems based on narrowband filters[J]. International journal of wireless information networks, 2022: 1–13.
[16]
AhmedH Y, ZeghidM, ImtiazW A, et al.. Two dimensional fixed right shift (FRS) code for SAC-OCDMA systems[J]. Optical fiber technology, 2019, 47: 73-87
CrossRef Google scholar
[17]
AissaouiA, HaciniL. Construction and performance analysis of a new SAC-OCDMA code based on Latin square matrix[J]. Turkish journal of electrical engineering & computer sciences, 2020, 28(5):2630-2642
CrossRef Google scholar
[18]
ABDELLAH B, AHMED G, ABBES B, et al. New zero cross-correlation codes based on Zech method’s for OCDMA systems[J]. Gazi University journal of science.
[19]
YangG C. Variable-weight optical orthogonal codes for CDMA networks with multiple performance requirements[J]. IEEE transactions on communications, 1996, 44(1):47-55
CrossRef Google scholar
[20]
AnasS B A, SeyedzadehS, MokhtarM, et al.. Variable weight Khazani-Syed code using hybrid fixed-dynamic technique for optical code division multiple access system[J]. Optical engineering, 2016, 55(10):106101
CrossRef Google scholar
[21]
KumawatS, KumarM R. Design of variable weight code for multimedia service in SAC-OCDMA systems[J]. IET optoelectronics, 2018, 12(2): 56-64
CrossRef Google scholar
[22]
LuZ, LuY, LiC. Design of zero cross correlation variable weight codes for multimedia services based on magic square in SAC-OCDMA systems[J]. Optoelectronics letters, 2021, 17(9):539-545
CrossRef Google scholar
[23]
FadhilH A, AljunidS A, AhmadR B. Performance of random diagonal code for OCDMA systems using new spectral direct detection technique[J]. Optical fiber technology, 2009, 15(3):283-289
CrossRef Google scholar
[24]
SharmaT, ChehriA, FortierP, et al.. Optical code construction of 2D spectral/spatial BIBD codes for SAC-OCDMA systems[J]. Applied sciences, 2021, 11(2):783
CrossRef Google scholar
[25]
AnasS B A, AbdullahM K, MokhtarM, et al.. Optical domain service differentiation using spectral-amplitude-coding[J]. Optical fiber technology, 2009, 15(1): 26-32
CrossRef Google scholar
[26]
El-MottalebS A A, FayedH A, IsmailN E, et al.. MDW and EDW/DDW codes with AND subtraction/single photodiode detection for high performance hybrid SAC-OCDMA/OFDM system[J]. Optical and quantum electronics, 2020, 52(5):1-21
CrossRef Google scholar
[27]
AlayediM, CherifiA, FerhatH A, et al.. Performance enhancement of SAC-OCDMA system using an identity row shifting matrix code[C], 2022, Singapore, Springer: 547-559
[28]
NisarK S, SarangalH, ThaparS S. Performance evaluation of newly constructed NZCC for SAC-OCDMA using direct detection technique[J]. Photonic network communications, 2019, 37(1):75-82
CrossRef Google scholar
[29]
NisarK S, AhmedH Y, ZeghidM, et al.. The multi-service schemes for SAC-OCDMA systems with variable code weight[J]. Optical and quantum electronics, 2021, 53(6):1-18
CrossRef Google scholar
[30]
AlayediM, CherifiA, HamidaA F. Performance enhancement of SAC-OCDMA system using a new optical code[C], 2019, New York, IEEE: 1-4
[31]
WeiZ, ShalabyH M H, Ghafouri-ShirazH. Modified quadratic congruence codes for fiber Bragg-grating-based spectral-amplitude-coding optical CDMA systems[J]. Journal of lightwave technology, 2001, 19(9): 1274
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/