Effect of substrate bias on the properties of plasma deposited organosilicone (pp-HMDSN) thin films

S. Saloum , S. A. Shaker , R. Hussin , M. N. Alkafri , A. Obaid , M. Alsabagh

Optoelectronics Letters ›› 2023, Vol. 19 ›› Issue (5) : 274 -278.

PDF
Optoelectronics Letters ›› 2023, Vol. 19 ›› Issue (5) : 274 -278. DOI: 10.1007/s11801-023-2017-1
Article

Effect of substrate bias on the properties of plasma deposited organosilicone (pp-HMDSN) thin films

Author information +
History +
PDF

Abstract

Organosilicone thin films have been deposited by plasma polymerization (pp) in a plasma enhanced chemical vapor deposition (PECVD) system using hexamethyldisilazane (HMDSN: C6H19Si2N) as a monomer precursor, at different biases of the stainless-steel substrate holder. The substrate bias affected film thickness, surface morphology, chemical composition and photoluminescence (PL) emission. For a negatively biased substrate, it is found that the film thickness is the minimum, while the porosity and PL emission are the maximum. For a positively biased substrate, the thickness and the ratio of Si/N are the maximum which correspond to a blue shift of the PL emission in comparison with the case of non-biased grounded substrate. In addition, the characterization of the plasma using a single cylindrical Langmuir probe has been performed to obtain information about both the electron density and the positive ion energy, where it can be concluded that the ion energy plays a major role in determining film thickness.

Cite this article

Download citation ▾
S. Saloum, S. A. Shaker, R. Hussin, M. N. Alkafri, A. Obaid, M. Alsabagh. Effect of substrate bias on the properties of plasma deposited organosilicone (pp-HMDSN) thin films. Optoelectronics Letters, 2023, 19(5): 274-278 DOI:10.1007/s11801-023-2017-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

SaloumS, ShakerS A, AlkafriM N, et al.. Hydrogenated silicon carbonitride thin film nanostructuring using SF6 plasma: structural and optical analysis[J]. Silicon, 2020, 12: 2957-2966

[2]

TrunecD, ZajkováL, BurskováV, et al.. Deposition of hard thin films from HMDSO in atmospheric pressure dielectric barrier discharge[J]. Journal of physics D: applied physics, 2010, 43(22):225403

[3]

SaloumS, AlkhaledB. Growth rate and sensing properties of plasma deposited silicon organic thin films from hexamethyldisilazane compound[J]. Acta physica polonica A, 2010, 117(3): 484-489

[4]

CarvalhoA T, CarvalhoR A M, SilvaM L P, et al.. Hydrophobic plasma polymerized hexamethyldisilazane thin films: characterization and uses[J]. Material research, 2009, 9(1):9-13

[5]

JaritzM, AlizadehP, WilskiS, et al.. Comparison of HMDSO and HMDSN as precursors for high barrier plasma polymerized multilayer coating systems on polyethylene terephthalate films[J]. Plasma processes and polymers, 2021, 18(8):2100018

[6]

SaloumS, AlkhaledB, AlsadatW, et al.. Plasma polymerized hexamethyldisiloxane thin films for corrosion protection[J]. Modern physics letters B, 2018, 32(3): 1850036

[7]

LiuC, QinH, LiuY, et al.. Improvement of electrical characteristics of InGaZnO thin film transistors by using HMDSO/O2 plasma deposited SiOCH buffer layer[J]. Current applied physics, 2021, 21: 170-174

[8]

Schmidt-SzalowskiK, Rzanek-BorochZ, SentekJ, et al.. Thin films deposition from hexamethyldisiloxane and hexamethyldisilazane under dielectric-barrier discharge (DBD) conditions[J]. Plasma and polymers, 2000, 5(3/4):173-190

[9]

SahliS, SeguiY, HadjM S, et al.. Growth, composition and structure of plasma-deposited siloxane and silazane[J]. Thin solid thin films, 1992, 217(1–2):17-25

[10]

LiD, DaiS, GoulletA, et al.. Ion impingement effect on the structure and optical properties of TixSi1−xO2 films deposited by ICP-PECVD[J]. Plasma processes and polymers, 2019, 16(8):1900034

[11]

SaloumS, ShakerS A, AlwazzehM, et al.. Polymer surface modification using He/O2 RF remote low-pressure plasma[J]. Surface and interface analysis, 2021, 53(9): 754-761

[12]

ProfijtH B, Van DeS M, KesselsW M M. Substrate biasing during plasma-assisted ALD for crystalline phase-control of TiO2 thin films[J]. Electrochemical and solid-state letters, 2012, 15(2):G1-G3

[13]

PrskaloA P, SchmauderS, ZiebertC, et al.. Molecular dynamics simulations of the sputtering of SiC and Si3N4[J]. Surface & coatings technology, 2010, 204(12–13):2081-2841

[14]

GengenbachT R, GriesserH R. Post-deposition ageing reactions differ markedly between plasma polymers deposited from siloxane and silazane monomers[J]. Polymer, 1999, 40: 5079-5094

[15]

RaposoM, FerreiraQ, RibeiroP A. Mendez-VilasA, DiazJ. A guide for atomic force microscopy analysis of soft-condensed matter[M]. Modern research and educational topics in microscopy, 2007, Badajoz, Formatex: 758-769

[16]

ZhangC, GunesO, LiY, et al.. The effect of substrate biasing during DC magnetron sputtering on the quality of VO2 thin films and their insulator-metal transition behavior[J]. Materials, 2019, 12(13):1-14

[17]

KozakA O, IvashchenkoV I, PoradaO K, et al.. Structural, optoelectronic and mechanical properties of PECVD Si-C-N films: an effect of substrate bias[J]. Materials science in semiconductor processing, 2018, 88: 65-72

[18]

KhatamiZ, WilsonP R J, WojcikJ, et al.. On the origin of white light emission from nanostructured silicon carbonitride thin films[J]. Journal of luminescence, 2018, 196: 504-510

[19]

AugustineB H, IreneE A, HeY J, et al.. Visible light emission from thin films containing Si, O, N, and H[J]. Journal of applied physics, 1995, 78(6):4020-4030

[20]

CullisA G, CanhamL T. Visible light emission due to quantum size effects in highly porous crystalline silicon[J]. Nature, 1991, 353: 335-338

[21]

KabashinA V, SylvestreJ P, PatskovskyS, et al.. Correlation between photoluminescence properties and morphology of laser-ablated Si/SiOx nanostructured films[J]. Journal of applied physics, 2002, 91(5):3248-3254

AI Summary AI Mindmap
PDF

152

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/