Experimental investigation on evolution of a split multi-wavelength bright-dark pulse in a mode-locked thulium-doped fiber laser

Xiaofa Wang, Jie Wang, Xianyi Duan

Optoelectronics Letters ›› 2022, Vol. 18 ›› Issue (12) : 717-722.

Optoelectronics Letters ›› 2022, Vol. 18 ›› Issue (12) : 717-722. DOI: 10.1007/s11801-022-2089-3
Article

Experimental investigation on evolution of a split multi-wavelength bright-dark pulse in a mode-locked thulium-doped fiber laser

Author information +
History +

Abstract

We report the experimental observation of evolving phenomenon of a split multi-wavelength bright-dark pulse in the nonlinear amplifying loop mirror (NALM)-based mode-locked thulium-doped fiber laser (TDFL) with a figure-eight configuration. Bright-dark pulse with 10 wavelengths was successfully obtained at the pump power of 3 W. The time interval between the bright and dark pulses was discovered not only increasing linearly with the pump power but also approximately equaling to the reciprocal of modulation frequency of radio frequency (RF) spectrum. Moreover, we also observed that the spectrum of split multi-wavelength bright-dark pulse can further present up to 13 wavelengths.

Cite this article

Download citation ▾
Xiaofa Wang, Jie Wang, Xianyi Duan. Experimental investigation on evolution of a split multi-wavelength bright-dark pulse in a mode-locked thulium-doped fiber laser. Optoelectronics Letters, 2022, 18(12): 717‒722 https://doi.org/10.1007/s11801-022-2089-3

References

[1]
SERKINV N, HASEGAWAA. Novel soliton solutions of the nonlinear Schrödinger equation model[J]. Physical review letters, 2000, 85(21):4502
CrossRef Google scholar
[2]
BEKKIN, NOZAKIK. Formations of spatial patterns and holes in the generalized Ginzburg-Landau equation[J]. Physics letters A, 1985, 110(3): 133-135
CrossRef Google scholar
[3]
MOLLENAUERL F, STOLENR H, GORDONJ P. Experimental observation of picosecond pulse narrowing and solitons in optical fibers[J]. Physical review letters, 1980, 45(13):1095-1098
CrossRef Google scholar
[4]
MATSAVJ, NEWSONT P, RICHARDSOND J, et al.. Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation[J]. Electronics letters, 1992, 28(15):1391-1393
CrossRef Google scholar
[5]
CHENG, WANGH, ZHUJ, et al.. Generation of transition of dark into bright and harmonic pulses in a passively Er-doped fiber laser using nonlinear multimodal interference technique[J]. Infrared physics & technol ogy, 2021, 112: 103607
CrossRef Google scholar
[6]
TIUZ C, TANS J, AHMADH, et al.. Dark pulse emission in nonlinear polarization rotation-based multi-wavelength mode-locked erbium-doped fiber laser[J]. Chinese optics letters, 2014, 12(11):113202
CrossRef Google scholar
[7]
ZAKHAROVV E, SHABATA B. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media[J]. Soviet physics jept, 1972, 34(1): 62-69
[8]
KRÖKELD, HALASN J, GIULIANIG, et al.. Dark-pulse propagation in optical fibers[J]. Physical review letters, 1988, 60(1):29-32
CrossRef Google scholar
[9]
TIUZ C, HARUNS W, AHMADH, et al.. Dark pulse generation in fiber laser system[J]. Optics & laser technology, 2022, 151: 108056
CrossRef Google scholar
[10]
KIVSHARYS, CHRISTOUJ, TIKHONENKOV, et al.. Dynamics of optical vortex solitons[J]. Optics communications, 1998, 152(1–3):198-206
CrossRef Google scholar
[11]
AFANASJEVV V, DIANOVE M, SERKINV N. Nonlinear pairing of short bright and dark soliton pulses by phase cross modulation[J]. IEEE journal of quantum electronics, 1989, 25(12):2656-2664
CrossRef Google scholar
[12]
TIANJ P, TIANH P, LIZ H, et al.. Combined solitary-wave solution for coupled higher-order nonlinear Schrödinger equations[J]. Journal of the Optical Society of America B, 2004, 21(11):1908-1912
CrossRef Google scholar
[13]
WANGL. Coexistence and evolution of bright pulses and dark solitons in a fiber laser[J]. Optics communications, 2013, 297: 129-132
CrossRef Google scholar
[14]
NINGQ Y, WANGS K, LUOA P, et al.. Bright-dark pulse pair in a figure-eight dispersion-managed passively mode-locked fiber laser[J]. IEEE photonics journal, 2012, 4(5):1647-1652
CrossRef Google scholar
[15]
WUQ, WUZ, YAOY, et al.. Three-component bright-dark-bright vector pulse fiber laser based on MoS2 saturable absorber[J]. Optics communications, 2021, 498: 127231
CrossRef Google scholar
[16]
GAOJ, HUF M, HUOX D, et al.. Bright-dark pair in passively mode-locked fiber laser based on graphene[J]. Laser physics, 2014, 24(8):085104
CrossRef Google scholar
[17]
HUX, GUOJ, ZHAOL M, et al.. Dark-bright soliton trapping in a fiber laser[J]. Optics letters, 2021, 46(5): 1105-1108
CrossRef Google scholar
[18]
ZHANGW Y, ZHANL, XIANT H, et al.. Generation of bright/dark pulses in an erbium-doped fiber laser mode-locked with glycerin[J]. Journal of lightwave technology, 2019, 37(15):3756-3760
CrossRef Google scholar
[19]
ZHAOR, LIG, ZHANGB, et al.. Multi-wavelength bright-dark pulse pair fiber laser based on rhenium disulfide[J]. Optics express, 2018, 26(5):5819-5826
CrossRef Google scholar
[20]
XINY, SHENH, ZHANGS, et al.. Tunable multi-wavelength bright-dark and dark-bright pulse pairs fiber lasers[J]. IEEE photonics journal, 2020, 12(6):31081
CrossRef Google scholar
[21]
WANGX F, LIUD X, HANH H, et al.. Generation of cavity-birefringence-dependent multi-wavelength bright-dark pulse pair in a figure-eight thulium-doped fiber laser[J]. Chinese physics B, 2021, 30(5): 054205
CrossRef Google scholar
[22]
ROSDINR Z R R, ALIN M, HARUNSW, et al.. Bright-dark pulses in nonlinear polarisation rotation based erbium-doped fiber laser[J]. International journal of mathematical, computational, physical and quantum engineering, 2014, 8(12): 1461-1464
[23]
WANGX, ZHOUP, WANGX, et al.. 2 µm bright-dark pulses in Tm-doped fiber ring laser with net anomalous dispersion[J]. Applied physics express, 2014, 7(2):022704
CrossRef Google scholar
[24]
ZHANGZ X, MOUC B, YANZ J, et al.. Orthogonally polarized bright-dark pulse pair generation in mode-locked fiber laser with a large-angle tilted fiber grating[J]. Applied physics B, 2016, 122(6): 161
CrossRef Google scholar
[25]
ZHAOJ, YANP, RUANS C. Observations of three types of pulses in an erbium-doped fiber laser by incorporating a graphene saturable absorber[J]. Applied optics, 2013, 52(35): 8465-8470
CrossRef Google scholar
[26]
AGRAWALG P. Nonlinear fiber optics[M]//Nonlinear science at the dawn of the 21st century, 2000, Berlin, Heidelberg, Springer: 195-211
CrossRef Google scholar
[27]
LAIW J, SHUMP, BINHL N. NOLM-NALM fiber ring laser[J]. IEEE journal of quantum electronics, 2005, 41(7):986-993
CrossRef Google scholar
[28]
GUOB, YAOY, TIANJ J, et al.. Observation of bright-dark soliton pair in a fiber laser with topological insulator[J]. IEEE photonics technology letters, 2015, 27(7):701-704
CrossRef Google scholar
[29]
IBARRA-ESCAMILLAB, DURáN-SáNCHEZM, POSADA-RAMíREZB, et al.. Dissipative soliton resonance in a thulium-doped all-fiber laser operating at large anomalous dispersion regime[J]. IEEE photonics journal, 2018, 10(5):2870572
CrossRef Google scholar
[30]
AHMADH, SHARBIRINA S, SAMIONM Z, et al.. All-fiber multimode interferometer for the generation of a switchable multi-wavelength thulium-doped fiber laser[J]. Applied optics, 2017, 56(21): 5865-5870
CrossRef Google scholar
[31]
MENGY, ZHANGS, LIH, et al.. Bright-dark soliton pairs in a self-mode locking fiber laser[J]. Optical engineering, 2012, 51(6):064302
CrossRef Google scholar
[32]
LIX, ZHANGS, MENGY, et al.. Harmonic mode locking counterparts of dark pulse and dark-bright pulse pairs[J]. Optics express, 2013, 21(7): 8409-8416
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/