PDF
Abstract
The hybrid quantum/classical scheme (HQCS) is used for the photoabsorption analysis of metal nanoparticles. The HQCS divides the structure of interest into quantum and classical subsystems. First, we calculate and report Lorentz parameters for gold (Au), silver (Ag), aluminum (Al), chromium (Cr), and nickel (Ni) permittivities used in the classical subsystem. Then, photoabsorption spectra were obtained from HQCS for the single nanoparticle structures with and without two sodium (Na) atoms. The Au, Ag, Al, Cr, and Ni show strong sensitivity to the presence of the atomic subsystem. This work could pave the way for how coupled plasmon modes between metal nanoparticles and atomic structures can be utilized for sensing devices.
Cite this article
Download citation ▾
Bashir Fotouhi.
Photoabsorption analysis of metal nanoparticles by hybrid quantum/classical scheme.
Optoelectronics Letters, 2022, 18(9): 519-524 DOI:10.1007/s11801-022-2041-6
| [1] |
FaramarziV, AhmadiV, HeidariM, et al.. Interband plasmon-enhanced optical absorption of DNA nucleobases through the graphene nanopore[J]. Optics letters, 2022, 47(1):194-197
|
| [2] |
CoomarA, ArntsenC, LopataK A, et al.. Near-field: a finite-difference time-dependent method for simulation of electrodynamics on small scales[J]. The journal of chemical physics, 2011, 135(8):084121
|
| [3] |
GhorbanzadehM, Moravej-FarshiM K, DarbariS. Designing a plasmonic optophoresis system for trapping and simultaneous sorting/counting of micro-and nano-particles[J]. Journal of lightwave technology, 2015, 33(16): 3453-3460
|
| [4] |
BelkinM, ChaoS H, JonssonM P, et al.. Plasmonic nanopores for trapping, controlling displacement, and sequencing of DNA[J]. ACS nano, 2015, 9(11):10598-10611
|
| [5] |
YinP, LinQ, RuanY, et al.. Investigation of multiple metal nanoparticles near-field coupling on the surface by discrete dipole approximation method[J]. Optoelectronics letters, 2021, 17(5):257-261
|
| [6] |
GaoY, NeuhauserD. Dynamical quantum-electrodynamics embedding: combining time-dependent density functional theory and the near-field method[J]. The journal of chemical physics, 2012, 137(7):074113
|
| [7] |
SakkoA, RossiT P, NeiminenR M. Dynamical coupling of plasmons and molecular excitations by hybrid quantum/classical calculations: time-domain approach[J]. Journal of physics: condensed matter, 2014, 26(31): 315013
|
| [8] |
SunD, DingY Y, KongL W, et al.. First principles calculation of the electronic-optical properties of Cu2MgSn (SxSe1−x)4[J]. Optoelectronics letters, 2020, 16(1): 29-33
|
| [9] |
DRAINE B T, FLATAU P J. User guide for the discrete dipole approximation code DDSCAT 7.0[EB/OL]. (2008-09-02) [2022-03-02]. https://arxiv.org/abs/0809.0337.
|
| [10] |
JohnsonP B, ChristyR W. Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd[J]. Physical review B, 1974, 9(12):5056
|
| [11] |
McpeakK M, JayantiS V, KressS J, et al.. Plasmonic films can easily be better: rules and recipes[J]. ACS photonics, 2015, 2(3): 326-333
|
| [12] |
MortensenJ J, HansenL B, JacobsenK W. Real-space grid implementation of the projector augmented wave method[J]. Physical review B, 2005, 71(3):035109
|
| [13] |
EnkovaaraJ, RostgaardC, MortensenJ J, et al.. Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method[J]. Journal of physics: condensed matter, 2010, 22(25): 253202
|
| [14] |
WalterM, HakkinenH, LehtovaaraL, et al.. Time-dependent density-functional theory in the projector augmented-wave method[J]. The journal of chemical physics, 2008, 128(24): 244101
|
| [15] |
BahnS R, JacobsenKW. An object-oriented scripting interface to a legacy electronic structure code[J]. Computing in science & engineering, 2000, 4(3): 56-66
|
| [16] |
HIBORN R C. Einstein coefficients, cross sections, f values, dipole moments, and all that[J]. ArXiv preprint physics, 2010: 0202029.
|
| [17] |
VanD M A, TchebotarevaA L, OrritM, et al.. Absorption and scattering microscopy of single metal nanoparticles[J]. Physical chemistry chemical physics, 2006, 8(30):3486-3495
|
| [18] |
MuskensO L, DelF N, ValleeF. Femtosecond response of a single metal nanoparticle[J]. Nano letters, 2006, 6(3):552-556
|
| [19] |
AbasifardM, AhmadiV, FotouhiB, et al.. DNA nucleobases sensing by localized plasmon resonances in graphene quantum dots with nanopore: a first principle approach[J]. The journal of physical chemistry C, 2019, 123(41):25309-25319
|
| [20] |
FotouhiB, AhmadiV, AbasifardM, et al.. Petahertz-frequency plasmons in graphene nanopore and their application to nanoparticle sensing[J]. Scientia iranica, 2017, 24(3):1669-1677
|
| [21] |
FotouhiB, AhmadiV, AbasifardM. Controlling DNA translocation speed through graphene nanopore via plasmonic fields[J]. Scientia iranica, 2018, 25(3):1849-1856
|