Amplification of high-order azimuthal mode based on a ring-core Yb-doped fiber

Nanxian Ou , Wei Li , Runzhou Qiu , Bin Zhang , Shecheng Gao , Weiping Liu

Optoelectronics Letters ›› 2022, Vol. 18 ›› Issue (4) : 0222 -0226.

PDF
Optoelectronics Letters ›› 2022, Vol. 18 ›› Issue (4) : 0222 -0226. DOI: 10.1007/s11801-022-2032-7
Article

Amplification of high-order azimuthal mode based on a ring-core Yb-doped fiber

Author information +
History +
PDF

Abstract

In order to increase the number of amplified azimuthal modes in Yb-doped fiber (YDF), a multiple azimuthal modes amplifier based on a ring-core Yb-doped fiber (RC-YDF) was proposed and demonstrated. A home-made RC-YDF which can support 6 azimuthal mode groups was employed to amplify the signal mode at 1 064 nm, using a core pump scheme. The amplification characteristics of 5 high-order azimuthal linear polarization (HA-LP) mode groups (LP11, LP21, LP31, LP41, LP51) were studied comprehensively. A more than 8 dB gain is obtained for each signal mode with 5 dBm input power, and the associated differential modal gain between all modes is less than 1 dB. The intensity profiles of all modes are stable and well preserved during the process of amplification.

Cite this article

Download citation ▾
Nanxian Ou, Wei Li, Runzhou Qiu, Bin Zhang, Shecheng Gao, Weiping Liu. Amplification of high-order azimuthal mode based on a ring-core Yb-doped fiber. Optoelectronics Letters, 2022, 18(4): 0222-0226 DOI:10.1007/s11801-022-2032-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Rubinsztein-DunlopH, ForbesA, BerryM V, et al.. Roadmap on structured light[J]. Journal of optics, 2016, 19(1):013001

[2]

ValenciaN H, SrivastavV, Leedumrong-WatthanakunS, et al.. Entangled ripples and twists of light: radial and azimuthal Laguerre-Gaussian mode entanglement[J]. Journal of optics, 2021, 23(10): 104001

[3]

YanL, KristensenP, RamachandranS. Vortex fibers for STED microscopy[J]. APL photonics, 2019, 4(2): 022903

[4]

ToyodaK, MiyamotoK, AokiN, et al.. Using optical vortex to control the chirality of twisted metal nanostructures[J]. Nano letters, 2012, 12(7): 3645-3649

[5]

OuyangX, XuY, XianM, et al.. Synthetic helical dichroism for six-dimensional optical orbital angular momentum multiplexing[J]. Nature photonics, 2021, 15(12):901-907

[6]

XianM, XuY, OuyangX, et al.. Segmented cylindrical vector beams for massively-encoded optical data storage[J]. Science bulletin, 2020, 65(24):2072-2079

[7]

LiG, BaiN, ZhaoN, et al.. Space-division multiplexing: the next frontier in optical communication[J]. Advances in optics and photonics, 2014, 6(4):413-487

[8]

AlarconA, ArgillanderJ, LimaG, et al.. Few-mode-fiber technology fine-tunes losses in quantum communication systems[J]. Physical review applied, 2021, 16(3):034018

[9]

ZhangH, Bigot-AstrucM, BigotL, et al.. Multiple modal and wavelength conversion process of a 10-Gbit/s signal in a 6-LP-mode fiber[J]. Optics express, 2019, 27(11): 15413-15425

[10]

Velázquez-BenítezA M, Guerra-SantillánK Y, Caudillo-ViurquezR, et al.. Optical trapping and micromanipulation with a photonic lantern-mode multiplexer[J]. Optics letters, 2018, 43(6):1303-1306

[11]

ChenS, HuangH, ZouH, et al.. Optical manipulation of biological particles using LP21 mode in fiber[J]. Journal of optics, 2014, 16(12):125302

[12]

HuangY, ShiF, WangT, et al.. High-order mode Yb-doped fiber lasers based on mode-selective couplers[J]. Optics express, 2018, 26(15): 19171-19181

[13]

WangT, WuJ, WuH, et al.. Wavelength-tunable LP11 mode pulse fiber laser based on black phosphorus[J]. Optics & laser technology, 2019, 119: 105618

[14]

LiuT, ChenS P, HouJ. Selective transverse mode operation of an all-fiber laser with a mode-selective fiber Bragg grating pair[J]. Optics letters, 2016, 41(24):5692-5695

[15]

LiuX, ChristensenE N, RottwittK, et al.. Nonlinear four-wave mixing with enhanced diversity and selectivity via spin and orbital angular momentum conservation[J]. APL photonics, 2020, 5(1):010802

[16]

LabruyereA, MartinA, LeprouxP, et al.. Controlling intermodal four-wave mixing from the design of microstructured optical fibers[J]. Optics express, 2008, 16(26): 21997-22002

[17]

ZhangY, ZhouY, TangX, et al.. Mode division multiplexing for multiple particles noncontact simultaneous trap[J]. Optics letters, 2021, 46(13):3017-3020

[18]

PaschottaR, NilssonJ, TropperA C, et al.. Ytterbium-doped fiber amplifiers[J]. IEEE journal of quantum electronics, 1997, 33(7):1049-1056

[19]

KimD J, KimJ W, ClarksonW A. High-power master-oscillator power-amplifier with optical vortex output[J]. Applied physics B, 2014, 117(1):459-464

[20]

LinD, CarpenterJ, FengY, et al.. High-power, electronically controlled source of user-defined vortex and vector light beams based on a few-mode fiber amplifier[J]. Photonics research, 2021, 9(5):856-864

[21]

LiH, ZhangY, DongZ, et al.. A high-efficiency all-fiber laser operated in high-order mode using ring-core Yb-doped fiber[J]. Annalen der physik, 2019, 531(10):1900079

[22]

FangW T, TaoR X, ZhangY M, et al.. Adaptive modal gain controlling for a high-efficiency cylindrical vector beam fiber laser[J]. Optics express, 2019, 27(22): 32649-32658

[23]

LvJ, LiH, ZhangY, et al.. Tailoring the spectrum and spatial mode of Yb-doped random fiber laser[J]. Optics express, 2022, 30(5):8345-8355

AI Summary AI Mindmap
PDF

170

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/