An optical fiber probe based on multi-optical well particle capture

Bingkun Gao , Yufei Rong , Peng Chen , Chunlei Jiang , Hao Wu

Optoelectronics Letters ›› 2022, Vol. 18 ›› Issue (11) : 641 -646.

PDF
Optoelectronics Letters ›› 2022, Vol. 18 ›› Issue (11) : 641 -646. DOI: 10.1007/s11801-022-2016-7
Article

An optical fiber probe based on multi-optical well particle capture

Author information +
History +
PDF

Abstract

In this paper, a new method of constructing single-fiber optical tweezers is proposed, which can achieve multi-optical well non-contact capture on the same optical fiber, so as to reduce the difficulty of making single-fiber optical tweezers and enhance the operation function of single-fiber optical tweezers. We use the 650 nm laser source to excite high purity LP11 mode in 980 nm single-mode fiber, which can achieve the multi-optical trap capture effect around the fiber port after simple micro-staggered core fusion treatment for common single-core fiber. Optical fiber ports are fabricated using thermal method to construct special tip structures. Simulation and experimental results show the feasibility of the structure. The excitation and utilization of multi-mode beams in single fiber constitute a new development of single fiber optical trap, enrich the function of single fiber optical tweezers, and make more practical applications in biomedical research possible.

Cite this article

Download citation ▾
Bingkun Gao, Yufei Rong, Peng Chen, Chunlei Jiang, Hao Wu. An optical fiber probe based on multi-optical well particle capture. Optoelectronics Letters, 2022, 18(11): 641-646 DOI:10.1007/s11801-022-2016-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LiuX, WuY, XuX, et al.. Bidirectional transport of nanoparticles and cells with a bio-conveyor belt[J]. Small, 2019, 15(50):1905209

[2]

AshkinA, DziedzicJ. Optical trapping and manipulation of viruses and bacteria[J]. Science, 1987, 235(4795): 1517-1520

[3]

BjorkholmJ E, FreemanR R, AshkinA, et al.. Observation of focusing of neutral atoms by the dipole forces of resonance-radiation pressure[J]. Physical review letters, 1978, 41(20):1361-1364

[4]

GauthierR C. Optical trapping: a tool to assist optical machining[J]. Optics & laser technology, 1997, 29(7):389-399

[5]

CrockerJ C, GrierD G. When like charges attract: the effects of geometrical confinement on long-range colloidal interactions[J]. Physical review letters, 1996, 77(9):1897-1900

[6]

WojdylaM, RajS, PetrovD. Absorption spectroscopy of single red blood cells in the presence of mechanical deformations induced by optical traps[J]. Journal of biomedical optics, 2012, 17(9):97006-97011

[7]

LandenbergerB, HfemannH, WadleS, et al.. Microfluidic sorting of arbitrary cells with dynamic optical tweezers[J]. Lab on a chip, 2012, 12(17):3177

[8]

YuanY F, WuG, LiX, et al.. Effects of twisting and bending on LP21 mode propagation in optical fiber[J]. Optics letters, 2011, 36(21): 4248-4250

[9]

UlrichS. Polarization optics of twisted single-mode fibers[J]. Applied optics, 1979, 18(13):2241-2251

[10]

TaylorR, HnatovskyC. Particle trapping in 3-D using a single fiber probe with an annular light distribution[J]. Optics express, 2003, 11(21):2775-2782

[11]

LiberaleC, MinzioniP, BragheriF, et al.. Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation[J]. Nature photonics, 2007, 1(12):723-727

[12]

YuZ, LiuZ, YangJ, et al.. Four-core optical fiber micro-hand[J]. Journal of lightwave technology, 2012, 30(10):1487-1491

[13]

LiuZ, GuoC, YangJ, et al.. Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application[J]. Optics express, 2006, 14(25):12510-12516

[14]

YuanL, LiuZ, YangJ. Measurement approach of Brownian motion force by an abrupt tapered fiber optic tweezers[J]. Applied physics letters, 2007, 91(5):259-265

[15]

MohantyS K, MohantyK S, BernsM W. Manipulation of mammalian cells using a single-fiber optical microbeam[J]. Journal of biomedical optics, 2008, 13(5):054049

[16]

AbedinK S, KerbageC, Fernandez-NievesA, et al.. Optical manipulation and rotation of liquid crystal drops using high-index fiber-optic tweezers[J]. Applied physics letters, 2007, 91(9): 091119

[17]

YuanL, LiuZ, YangJ, et al.. Twin-core fiber optical tweezers[J]. Optics express, 2008, 16(7): 4559-4566

[18]

LiuZ, WangL, LiangP, et al.. Mode division multiplexing technology for single-fiber optical trapping axial-position adjustment[J]. Optics letters, 2013, 38(14):2617-2620

[19]

ChenS J, HuangH, ZouH M, et al.. Optical manipulation of biological particles using LP21 mode in fiber[J]. Journal of optics, 2014, 16(12):125302

[20]

ZhangY, LiangP, LeiJ, et al.. Multi-dimensional manipulation of yeast cells using a LP11 mode beam[J]. Journal of lightwave technology, 2014, 32(6): 1098-1103

[21]

KuangT, XiongW, LuoB, et al.. Optical confinement efficiency in the single beam intracavity optical tweezers[J]. Optics express, 2020, 28(24):35734-35747

[22]

LiuZ, TangX, ZhangY, et al.. Simultaneous trapping of low-index and high-index microparticles using a single optical fiber Bessel beam[J]. Optics and lasers in engineering, 2020, 131: 106119

[23]

FOOLADI E, SADEGHI M, ADELPOUR Z, et al. Performance improvement of a plasmonic tapered twin-core fiber optical tweezers[J]. Optik, 2021, 245.

[24]

ZhangY X, ZhouY, TangX Y, et al.. Mode division multiplexing for multiple particles noncontact simultaneous trap[J]. Optics letters, 2021, 46(13):3017-3020

AI Summary AI Mindmap
PDF

172

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/