[1] | DongreJ K, NogriyaV, RamrakhianiM. Structural, optical and photoelectrochemical characterization of CdS nanowire synthesized by chemical bath deposition and wet chemical etching[J]. Applied surface science, 2009, 255(12):6115-6120 |
[2] | LahariyaV. Study of electroluminescence in cadmium sulfide polymer nanocomposite films[J]. Journal of nano research, 2017, 49: 181-189 |
[3] | BanerjeeR, JayakrishnanR, AyyubP. Effect of the size-induced structural transformation on the band gap in CdS nanoparticles[J]. Journal of physics: condensed matter, 2000, 12(50):10647-10652 |
[4] | NogriyaV, DongreJ K, RamrakhianiM, et al.. Electro-and photo-luminescence studies of CdS nanocrystals prepared by organometallic precursor[J]. Chalcogenide letters, 2008, 5(12):365-373 |
[5] | LahariyaV, KumariE, SinghN. Optical investigation of starch capped cadmium sulfide nanoparticles[J]. Materials today: proceedings, 2022, 48(3):622-625 |
[6] | MallikK, MandalM, PradhanN, et al.. Seed mediated formation of bimetallic nanoparticles by UV irradiation: a photochemical approach for the preparation of core-shell type structures[J]. Nano letters, 2001, 1(6):319-322 |
[7] | CelebiS, ErdamarA K, SennarogluA, et al.. Synthesis and characterization of poly (acrylic acid) stabilized cadmium sulfide quantum dots[J]. Journal of physical chemistry B, 2007, 111: 12668-12675 |
[8] | DeviJ, DuttaP. A study on dielectric properties of cadmium-zinc sulphide core-shell nanocomposites for application as nanoelectronics filter component in microwave domain[J]. Journal of electronic materials, 2018, 47(7):3529-3542 |
[9] | SuthakaranS, DhanapandianS, KrishnakumarN, et al.. Hydrothermal synthesis of surfactant assisted Zn doped SnO2 nanoparticles with enhanced photocatalytic performance and energy storage performance[J]. Journal of physics and chemistry of solids, 2020, 141: 109407 |
[10] | LahariyaV, RamrakhianiM. Luminescence study on Mn, Ni co-doped zinc sulfide nanocrystals[J]. Luminescence, 2020, 35(6):924-933 |
[11] | AmmaB S, RamakrishnaK, PattabiM. Comparison of various organic stabilizers as capping agents for CdS nanoparticles synthesis[J]. Journal of materials science: materials in electronics, 2007, 18(11):1109-1113 |
[12] | SadhuS, ChowdhuryP S, PatraA. Synthesis, and time-resolved photoluminescence spectroscopy of capped CdS nanocrystals[J]. Journal of luminescence, 2008, 128(7):1235-1240 |
[13] | LahariyaV, KumarS. Study on structural and optical properties of Sb2S3 and CdI2 composite thin films deposited by thermal vapor deposition[J]. International journal of nanoscience, 2018, 17(04):1760033 |
[14] | MurugadossG. Synthesis and optical characterization of PVP and SHMP-encapsulated Mn2+-doped ZnS nanocrystals[J]. Journal of luminescence, 2010, 130(11): 2207-2214 |
[15] | WaradH C, GhoshS C, HemtanonB, et al.. Luminescent nanoparticles of Mn doped ZnS passivated with sodium hexametaphosphate[J]. Science and technology of advanced materials, 2005, 6(3–4):296-301 |
[16] | ThakurS, DasP, MandalS K. Solvent-induced diversification of CdS nanostructures for photocatalytic degradation of methylene blue[J]. ACS applied nano materials, 2020, 3(6):5645-5655 |
[17] | MarandiM, TaghaviniaN, MahdaviS M. A photochemical method for controlling the size of CdS nanoparticles[J]. Nanotechnology, 2005, 16(2):334 |
[18] | Lozada-MoralesR, Zelaya-AngelO, Torres-DelgadoG. Photoluminescence in cubic and hexagonal CdS films[J]. Applied surface science, 2001, 175: 562-566 |
[19] | WagehS, Shu-ManL, YouF T, et al.. Optical properties of strongly luminescing mercaptoactic-acid-capped ZnS nanoparticles[J]. Journal of luminescence, 2003, 102: 768-773 |
[20] | KumarS, GradzielskiM, MehtaS K. The critical role of surfactants towards CdS nanoparticles: synthesis, stability, optical and PL emission properties[J]. RSC advances, 2013, 3(8):2662-2676 |
[21] | MccamyC S. Correlated color temperature as an explicit function of chromaticity coordinates[J]. Color research & application, 1992, 17(2):142-144 |
[22] | KoczkurK M, MourdikoudisS, PolavarapuL, et al.. Polyvinylpyrrolidone (PVP) in nanoparticle synthesis[J]. Dalton transactions, 2015, 44(41):17883-17905 |
[23] | LuJ, SunM, YuanZ, et al.. Innovative insight for sodium hexametaphosphate interaction with serpentine[J]. Colloids and surfaces A: physicochemical and engineering aspects, 2019, 560: 35-41 |
[24] | LiZ H, HanY X, LiY J, et al.. Effect of serpentine and sodium hexametaphosphate on ascharite flotation[J]. Transactions of nonferrous metals society of China, 2017, 27(8):1841-1848 |