Numerical modeling of ZnSnO/CZTS based solar cells

Assiya Haddout , Mounir Fahoume , Abderrahim Raidou , Mohamed Lharch

Optoelectronics Letters ›› 2022, Vol. 18 ›› Issue (5) : 276 -282.

PDF
Optoelectronics Letters ›› 2022, Vol. 18 ›› Issue (5) : 276 -282. DOI: 10.1007/s11801-022-1144-4
Article

Numerical modeling of ZnSnO/CZTS based solar cells

Author information +
History +
PDF

Abstract

Numerical simulation has been performed to improve the performance of Cu2ZnSnS4 (CZTS) solar cells by replacing CdS with Zn1−xSnxO buffer layer. The influences of thickness, donor concentration and defect density of buffer layers on the performance of CZTS solar cells were investigated. It has been found that Zn1−xSnxO buffer layer for Sn content of 0.20 is better for CZTS solar cell. A higher efficiency can be achieved with thinner buffer layer. The optimized solar cell demonstrated a maximum power conversion efficiency of 13%.

Cite this article

Download citation ▾
Assiya Haddout, Mounir Fahoume, Abderrahim Raidou, Mohamed Lharch. Numerical modeling of ZnSnO/CZTS based solar cells. Optoelectronics Letters, 2022, 18(5): 276-282 DOI:10.1007/s11801-022-1144-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

HaddoutA, RaidouA, FahoumeM. A review on the numerical modeling of CdS/CZTS-based solar cells[J]. Applied physics A, 2019, 125(2):124

[2]

YanC, HuangJ, SunK, et al.. Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment[J]. Nature energy, 2018, 3(9): 764-772

[3]

JacksonP, WuerzR, HariskosD, et al.. Effects of heavy alkali elements in Cu(In, Ga)Se2 solar cells with efficiencies up to 22.6%[J]. Physica status solidi (RRL)-rapid research letters, 2016, 10(8):583-586

[4]

GreenM, DunlopE, HohlE J, et al.. Solar cell efficiency tables (version 57)[J]. Progress in photovoltaics: research and applications, 2021, 29(1):3-15

[5]

CourelM, Andrade-ArvizuJ A, VIGIL-GalánO. The role of buffer/kesterite interface recombination and minority carrier lifetime on kesterite thin film solar cells[J]. Materials research express, 2016, 3(9):095501

[6]

CourelM, Valencia-ResendizE, AndradearvizuJ A, et al.. Towards understanding poor performances in spray-deposited Cu2ZnSnS4 thin film solar cells[J]. Solar energy materials and solar cells, 2017, 159: 151-158

[7]

LiuB, GuoJ, HaoR, et al.. Effect of Na doping on the performance and the band alignment of CZTS/CdS thin film solar cell[J]. Solar energy, 2020, 201: 219-226

[8]

CrovettoA, PalsgaardM L N, GunstT, et al.. Interface band gap narrowing behind open circuit voltage losses in Cu2ZnSnS4 solar cells[J]. Applied physics letters, 2017, 110: 083903

[9]

CuiX, SunK, HuangJ, et al.. Enhanced heterojunction interface quality to achieve 9.3% efficient Cd-free Cu2ZnSnS4 solar cells using atomic layer deposition ZnSnO buffer layer[J]. Chemistry of materials, 2018, 30(21):7860-7871

[10]

HaddoutA, RaidouA, FahoumeM, et al.. Influence of CZTS layer parameters on cell performance of kesterite thin-film solar cells, 2019, Singapore, Springer: 640-646

[11]

HaddoutA, FahoumeM, QachaouA, et al.. Understanding effects of defects in bulk Cu2ZnSnS4 absorber layer of kesterite solar cells[J]. Solar energy, 2020, 211: 301-311

[12]

BurgelmanM, NolletP, DegraveS. Modelling polycrystalline semiconductor solar cells[J]. Thin solid films, 2000, 361–362: 527-532

[13]

ShinB, GunawanO, ZhuY, et al.. Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber: Cu2ZnSnS4 solar cell with 8.4% efficiency[J]. Progress in photovoltaics research & applications, 2013, 21(1):72-76

[14]

ZhangH, ChengS, YuJ, et al.. Prospects of Zn (O, S) as an alternative buffer layer for Cu2ZnSnS4 thin-film solar cells from numerical simulation[J]. Micro & nano letters, 2016, 11(7):386-390

[15]

DjinkwiW M, OuédraogoS, NdjakaJ M B. Theoretical analysis of minority carrier lifetime and Cd-free buffer layers on the CZTS based solar cell performances[J]. Optik, 2019, 183: 284-293

[16]

KapilashramiM, KronawitterC X, TörndahlT, et al.. Soft X-ray characterization of Zn1−xSnxOy electronic structure for thin film photovoltaics[J]. Physical chemistry chemical physics, 2012, 14: 10154

[17]

SoH S, HwangS B, JungD H, et al.. Optical and electrical properties of Sn-doped ZnO thin films studied via spectroscopic ellipsometry and hall effect measurements[J]. Journal of the Korean physical society, 2017, 70(7):706-713

[18]

JhumaF A, RashidM J. Simulation study to find suitable dopants of CdS buffer layer for CZTS solar cell[J]. Journal of theoretical and applied physics, 2020, 14(1):75-84

[19]

GrenetL, EmieuxF, Andrade-ArvizuJ, et al.. Sputtered ZnSnO buffer layers for kesterite solar cells[J]. ACS applied energy materials, 2020, 3(2):1883-1891

[20]

Platzer-BjörkmanC, FriskC, LarsenJ K, et al.. Reduced interface recombination in Cu2ZnSnS4 solar cells with atomic layer deposition Zn1−xSnxOy buffer layers[J]. Applied physics letters, 2015, 107(24):243904

[21]

EricsonT, LarssonF, TörndahlT, et al.. Zinc tin oxide buffer layer and low temperature post annealing resulting in a 9.0% efficient Cd-free Cu2ZnSnS4 solar cell[J]. Solar RRL, 2017, 1(5): 1700001

[22]

LarsenJ K, LarssonF, TörndahlT, et al.. Cadmium free Cu2ZnSnS4 solar cells with 9.7% efficiency[J]. Advanced energy materials, 2019, 9(21): 1900439

[23]

TajimaS, UmeharaM, MiseT. Photovoltaic properties of Cu2ZnSnS4 cells fabricated using ZnSnO and ZnSnO/CdS buffer layers[J]. Japanese journal of applied physics, 2016, 55(11): 112302

[24]

CuiX, SunK, HuangJ, et al.. Cd-Free Cu2ZnSnS4 solar cell with an efficiency greater than 10% enabled by Al2O3 passivation layers[J]. Energy & environmental science, 2019, 12(9): 2751-2764

AI Summary AI Mindmap
PDF

170

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/