Numerical research on mid-infrared supercontinuum generation in Ge11.5As24Se64.5 few-mode photonic crystal fibers

Weihua Shi, Tiantian Zhang, Chuanxiang Xu

Optoelectronics Letters ›› 2022, Vol. 18 ›› Issue (4) : 0233-0237.

Optoelectronics Letters ›› 2022, Vol. 18 ›› Issue (4) : 0233-0237. DOI: 10.1007/s11801-022-1121-y
Article

Numerical research on mid-infrared supercontinuum generation in Ge11.5As24Se64.5 few-mode photonic crystal fibers

Author information +
History +

Abstract

Based on the nonlinear and mode coupling effect in few-mode photonic crystal fiber (FM-PCF), an approach for supercontinuum (SC) generation in the mid-infrared (MIR) region is proposed. The propagation characteristics of Ge11.5As24Se64.5 FM-PCF have been analyzed and optimized by the full-vector finite element method. The two-mode generalized nonlinear Schrodinger equation (TM-GNLSE) is set up, and the SC generation has been analyzed by the split-step Fourier method. The SC from 1.80 µm to 11.32 µm is generated by pumping 3.0-cm-long fiber at the central wavelength of 3.0 µm, the peak power of 120 W, and the pulse duration of 250 fs.

Cite this article

Download citation ▾
Weihua Shi, Tiantian Zhang, Chuanxiang Xu. Numerical research on mid-infrared supercontinuum generation in Ge11.5As24Se64.5 few-mode photonic crystal fibers. Optoelectronics Letters, 2022, 18(4): 0233‒0237 https://doi.org/10.1007/s11801-022-1121-y

References

[1]
SteinmeyerG, SkibinaJ S. Supercontinua: entering the mid-infrared[J]. Nature photonics, 2014, 8(11):814-815
CrossRef Google scholar
[2]
KalraS, VyasS, TiwariM, et al.. Multi-material photonic crystal fiber in MIR region for broadband supercontinuum generation[M]//Optical and wireless technologies. Berlin, Heidelberg: Springer, 2018, 472: 199-209
[3]
WeiW, PengX, DaiS, et al.. Visible to mid-infrared supercontinuum generated in novel GeS2−Ga2S3−CsI step-index fiber[J]. Journal of modern optics, 2019, 66(11):1-7
CrossRef Google scholar
[4]
ZhuY, ZhengZ, GeX, et al.. High-power, ultra-broadband supercontinuum source based upon 1/1.5 m dual-band pumping[J]. Chinese optics letters, 2021, 19(4):041403-1–041403-6
CrossRef Google scholar
[5]
SainiT S, KumarA, SinhaR K. Broadband mid-infrared supercontinuum spectra spanning 2–15 µm using As2Se3 chalcogenide glass triangular-core graded index photonic crystal fiber[J]. Journal of light wave technology, 2015, 33(18):3914-3920
CrossRef Google scholar
[6]
ChengT, NagasakaK, TuanT H, et al.. Mid-infrared supercontinuum generation spanning 2.0 to 15.1µm in a chalcogenide step-index fiber[J]. Optics letters, 2016, 41(9):2117-2120
CrossRef Google scholar
[7]
WuB, ZhaoZ, WangX, et al.. Mid-infrared supercontinuum generation in a suspended-core tellurium-based chalcogenide fiber[J]. Optical materials express, 2018, 8(5):1341-1348
CrossRef Google scholar
[8]
GaoW, AmraouiM E, LiaoM, et al.. Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber[J]. Optics express, 2013, 21(8):9573-9583
CrossRef Google scholar
[9]
ShaB, SsA, MfA. Ultra-high birefringent, highly non-linear Ge20Sb15Se65 chalcogenide glass photonic crystal fiber with zero dispersion wavelength for mid-infrared applications[J]. Optik, 2020, 225: 1-27
[10]
IrnisK, OleB. Multimode supercontinuum generation in chalcogenide glass fibres[J]. Optics express, 2016, 24(3):2513-2526
CrossRef Google scholar
[11]
KhalifaA B, SalemA B, CherifR. Mid-infrared supercontinuum generation in multimode As2Se3 chalcogenide photonic crystal fiber[J]. Applied optics, 2017, 56(15):4319-4324
CrossRef Google scholar
[12]
SwiderskiJ, MichalskaM, MazeG. Mid-IR supercontinuum generation in a ZBLAN fiber pumped by a gain-switched mode-locked Tm-doped fiber laser and amplifier system[J]. Optics express, 2013, 21(7):7851-7857
CrossRef Google scholar
[13]
QinG, XinY, KitoC, et al.. Ultra-broadband supercontinuum generation from ultraviolet to 6.28 µm in a fluoride fiber[J]. Applied physics letters, 2009, 95(16):584-588
CrossRef Google scholar
[14]
KubatI, PetersenC R, MøllerU V, et al.. Thulium pumped mid-infrared 0.9–9µm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers[J]. Optics express, 2014, 22(4):3959-3967
CrossRef Google scholar
[15]
SafaeiA, BolorizadehM A. Quantum mechanical treatment of the third order nonlinear term in NLS equation and the supercontinuum generation[C]. Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications X, August 28–September 1, 2016, San Diego, California, USA, 2016, Washington, SPIE: 995803
[16]
ChaitanyaA, SinghS T, AjeetK, et al.. Ultra broad-band mid-IR supercontinuum generation in Ge11.5As24Se64.5 based chalcogenide graded-index photonic crystal fiber: design and analysis[J]. Applied optics, 2016, 55(36):10138-10145
CrossRef Google scholar
[17]
FrancescoP, PeterH. Description of ultrashort pulse propagation in multimode optical fibers[J]. Journal of the optical society of America B, 2008, 25(10):1645-1654
CrossRef Google scholar
[18]
FangY T, LiangZ C. Unusual transmission through usual one-dimensional photonic crystal in the presence of evanescent wave[J]. Optics communications, 2010, 283(10):2102-2108
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/