Focusing enhanced broadband metalens via height optimization

Junjie Wang , Deli Chen , Zhan Wang , Qi Xue , Xiaohong Sun

Optoelectronics Letters ›› 2022, Vol. 18 ›› Issue (2) : 72 -76.

PDF
Optoelectronics Letters ›› 2022, Vol. 18 ›› Issue (2) : 72 -76. DOI: 10.1007/s11801-022-1095-9
Article

Focusing enhanced broadband metalens via height optimization

Author information +
History +
PDF

Abstract

Metalenses are two-dimensional planar metamaterial lenses, which have the advantages of high efficiency and easy integration. Based on the method of spatial multiplexing, a metalens with a wide working waveband is designed by arranging TiO2 nanopillars under the resonance phase regulation. In addition, choosing an assistant metalens with optimized heights is effective to enhance metalens’s focusing, which is also illustrated in this paper. The metalens, designed with numerical aperture (NA) of 0.72 and center working wavelength of 600 nm, achieves the working waveband of 550–660 nm, the focus point’s size of below 420 nm, and the focusing efficiency of more than 30%.

Cite this article

Download citation ▾
Junjie Wang, Deli Chen, Zhan Wang, Qi Xue, Xiaohong Sun. Focusing enhanced broadband metalens via height optimization. Optoelectronics Letters, 2022, 18(2): 72-76 DOI:10.1007/s11801-022-1095-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

PatriceG, FedericoC, FrancescoA, et al.. Recent advances in planar optics: from plasmonic to dielectric metasurfaces[J]. Optica, 2017, 4(1):139-152

[2]

YuN F, FrancescoA, PatriceG, et al.. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces[J]. Nano letters, 2012, 12(12):6328-6333

[3]

YuN F, FedericoC. Flat optics with designed metasurfaces[J]. Nature materials, 2014, 13(2):139-150

[4]

YuN F, PareiceG, MikhailA, et al.. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054):333-337

[5]

NinaM, WilliamL B, LanR H, et al.. Plasmonic meta-atoms and metasurfaces[J]. Nature photonics, 2014, 8(12):889-898

[6]

SamanJ, ZubinJ. All-dielectric metamaterials[J]. Nature nanotechnology, 2016, 11(1):23-36

[7]

AmirA, YuH, MahmoodB, et al.. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nature nanotechnology, 2015, 10(11):937-943

[8]

MohammadrezaK, ChenW T, RobertC D, et al.. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290):1190-1194

[9]

WangS M, ChenD L, SunX H, et al.. GaP-based high-efficiency elliptical cylinder metasurface in visible light[J]. Chinese physics letters, 2020, 37(5):057801

[10]

FrancescoA, MikhsilA K, PatriceG, et al.. Multiwavelength achromatic metasurfaces by dispersive phase compensation[J]. Science, 2015, 347(6228): 1342-1345

[11]

WangS M, ChenM K, ChenB H, et al.. A broadband achromatic metalens in the visible[J]. Nature nanotechnology, 2018, 13(3):227-232

[12]

ChenD L, QiY L, SunX H, et al.. Design of dielectric deflecting metasurface and metalens in the visible-light range[J]. Optical engineering, 2021, 60(3):035104

[13]

PanW, WangX Y, ChenQ, et al.. Design of multi-channel terahertz beam splitter based on Z-shaped metasurface[J], 2020, 16(6): 437-440

[14]

ChenD L, WangJ J, SunX H, et al.. The bifocal metalenses for independent focusing of orthogonally circularly polarized light[J]. Journal of physics D: applied physics, 2021, 54(7):075103

[15]

ChenD L, WangJ J, SunX H, et al.. Polarization-insensitive dielectric metalenses with different numerical apertures and off-axis focusing characteristics[J]. Journal of the optical sociery of America B, 2020, 37(12): 3588

[16]

WangS M, ChenD L, SunX H, et al.. The investigation of height-dependent meta-lens and focusing properties[J]. Optics communications, 2019, 460(1): 125129

[17]

LiuY, YangH H, LuY L, et al.. A whispering gallery mode strain sensor based on microtube resonator[J]. Optoelectronics letters, 2021, 17(4): 199-204

[18]

RezaK, ShiZ J, ChenW T, et al.. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion[J]. Nano letters, 2017, 17(3):1819-1824

[19]

ChenW T, ShiZ J, FedericoC, et al.. A broadband achromatic metalens for focusing and imaging in the visible[J]. Nature nanotechnology, 2018, 13(3):220-226

AI Summary AI Mindmap
PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/