Numerical simulation of the heavily Ge-doped polarization-maintaining fiber with normal dispersion

Hongwei Li , Chuncan Wang , Haitao An

Optoelectronics Letters ›› 2022, Vol. 18 ›› Issue (1) : 35 -42.

PDF
Optoelectronics Letters ›› 2022, Vol. 18 ›› Issue (1) : 35 -42. DOI: 10.1007/s11801-022-1031-z
Article

Numerical simulation of the heavily Ge-doped polarization-maintaining fiber with normal dispersion

Author information +
History +
PDF

Abstract

The heavily germanium (Ge)-doped silica fiber assisted by two air holes in the cladding exhibits high nonlinearity and birefringence, low loss and normal group velocity dispersion (GVD) for two fundamental modes (FMs). When the 1 920 nm and 0.1 ps pump pulse with 100 kW peak power is coupled into the 0.5-m-long fiber and polarized along one of two principle axes, the generated spectra can cover the wavelength range around 1 000–2 500 nm at −20 dB. Furthermore, the output pulse has an excellent coherence in the whole wavelength range.

Cite this article

Download citation ▾
Hongwei Li, Chuncan Wang, Haitao An. Numerical simulation of the heavily Ge-doped polarization-maintaining fiber with normal dispersion. Optoelectronics Letters, 2022, 18(1): 35-42 DOI:10.1007/s11801-022-1031-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

WangC C, KimJ, JinC, et al.. Review: near infrared spectroscopy in optical coherence tomography. Journal of near infrared spectroscopy, 2012, 20(1):237

[2]

LabruyèreA, TonelloA, CoudercV, et al.. Compact supercontinuum sources and their biomedical applications. Optical fiber technology, 2012, 18(5): 375-378

[3]

TuH, BoppartS A. Coherent fiber supercontinuum for biophotonics. Laser & photonics reviews, 2013, 7(5):628-645

[4]

LevickA P, GreenwellC L, IrelandJ, et al.. Spectral radiance source based on supercontinuum laser and wavelength tunable bandpass filter: the spectrally tunable absolute irradiance and radiance source. Applied optics, 2014, 53(16):3508-3519

[5]

HuangC L, LiaoM S, BiW J, et al.. Ultraflat, broadband, and highly coherent supercontinuum generation in all-solid microstructured optical fibers with all-normal dispersion. Photonics research, 2018, 6(6):601-608

[6]

LiuW, WuY, QiL. The influences of dispersions on supercontinuum in photonic crystal fiber. Journal of physics: conference series, 2021, 1846(1):012071

[7]

CheshmberahA, SeifouriM, OlyaeeS. Supercontinuum generation in PCF with As2S3/Ge20Sb15Se65 chalcogenide core pumped at third telecommunication wavelengths for WDM. Optical and quantum electronics, 2020, 52(12): 509

[8]

MariuszK, DamianM, GrzegorzS, et al.. Coherent supercontinuum generation in tellurite glass regular lattice photonic crystal fibers. Journal of the optical society of America B, 2019, 36(2): A112

[9]

HoangV T, KasztelanicR, FilipkowskiA, et al.. Supercontinuum generation in an all-normal dispersion large core photonic crystal fiber infiltrated with carbon tetrachloride. Optical materials express, 2019, 9(5): 2264

[10]

WangC C, WangM H, WuJ. Heavily germanium-doped silica fiber with a flat normal dispersion profile. IEEE photonics journal, 2015, 7(2): 1-10

[11]

LiuY, ZhaoY, LyngsoJ, et al.. Suppressing short-term polarization noise and related spectral decoherence in all-normal dispersion fiber supercontinuum generation. Journal of lightwave technology, 2015, 33(9):1814-1820

[12]

TarnowskiK, MartynkienT, MergoP, et al.. Polarized all-normal dispersion supercontinuum reaching 2.5 µm generated in a birefringent microstructured silica fiber. Optics express, 2017, 25(22):27452-27463

[13]

GenierE, GhoshA N, BobbaS, et al.. Cross-phase modulation instability in PM ANDi fiber-based super-continuum generation, 2020, New York, IEEE: 88-125

[14]

DobrakowskiD, RampurA, StepniewskiG, et al.. Development of highly nonlinear polarization maintaining fibers with normal dispersion across entire transmission window. Journal of optics, 2018, 21(1):015504

[15]

GhoshA N, MeneghettiM, PetersenC R, et al.. Chalcogenide-glass polarization-maintaining photonic crystal fiber for mid-infrared supercontinuum generation, 2019, New York, IEEE

[16]

CoutureN, OsticR, ReddyP H, et al.. Polarization-resolved supercontinuum generated in a germania-doped photonic crystal fiber. Journal of physics: photonics, 2021, 3(2): 25002

[17]

WangC C, LiH W, QiaoY J, et al.. Normaldispersion CS2-filled silica fiber with broadband single-polarization property. Optical fiber technology, 2021, 66: 102665

[18]

FlemingJ W. Dispersion in GeO2-SiO2 glasses. Applied optics, 1984, 23(4): 4486-4493

[19]

YuriY, AlexeiM. D-scan measurement of nonlinear refractive index in fibers heavily doped with GeO2. Optics letters, 2007, 32(22):3257-3259

[20]

LagsgaardJ, TuH H. How long wavelengths can one extract from silica-core fibers?. Optics letters, 2013, 38(21):4518-4521

[21]

AgrawalG P. Nonlinear fiber optics, 2007, 4th ed.New York, Academic Press

[22]

RottwittK, PovlsenJ H. Analyzing the fundamental properties of Raman amplification in optical fibers. Journal of lightwave technology, 2005, 23(11):3597-3605

[23]

RieznikA A, HeidtA M, KonigP G, et al.. Optimum integration procedures for supercontinuum simulation. IEEE photonics journal, 2012, 4(2):552-560

[24]

ImeshevG, FermannM E. 230-kW peak power femtosecond pulses from a high power tunable source based on amplification in Tm-doped fiber. Optics express, 2005, 13(19):7424-7431

[25]

DudleyJ M, GentyG, CoenS. Supercontinuum generation is photonic crystal fiber. Review of modern physics, 2006, 78: 1135-1184

AI Summary AI Mindmap
PDF

149

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/