Holographic grating fabrication for wide angular bandwidth using polymer thin films

Peng-fei Wu, Zi-jun Wu, Yu Zhuang, Hong-liang Liu

Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (1) : 1-4.

Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (1) : 1-4. DOI: 10.1007/s11801-021-9220-8
Article

Holographic grating fabrication for wide angular bandwidth using polymer thin films

Author information +
History +

Abstract

To increase the angular bandwidth of volume holographic grating, we fabricate holographic gratings based on grating multiplexing technique by using thin films of photopolymers and polymer dispersed liquid crystals. Experimental results confirm that the liquid crystal materials increase the refractive index modulation of the grating, enabling high diffraction efficiency with wide angular response compared to pure polymer materials. We observe that the fabricated holographic grating has near 80% of diffraction efficiency and about 18° of angular bandwidth, which can be further improved by modifying the liquid crystal/polymer mixtures and the grating multiplexing technique. The grating can be used to fabricate holographic waveguide structures for emerging applications in the near-eye display systems.

Cite this article

Download citation ▾
Peng-fei Wu, Zi-jun Wu, Yu Zhuang, Hong-liang Liu. Holographic grating fabrication for wide angular bandwidth using polymer thin films. Optoelectronics Letters, 2021, 17(1): 1‒4 https://doi.org/10.1007/s11801-021-9220-8

References

[1]
ArthurJ, BaileyE, WilliamsP. Optical Engineering, 2017, 56: 051405
CrossRef Google scholar
[2]
MikulchykT, WalsheJ. Sensors and Actuators B, 2017, 239: 776
CrossRef Google scholar
[3]
ChenH S, WangY J, ChenP J, LinY H. Optical Express, 2015, 23: 28154
CrossRef Google scholar
[4]
AksitK, LopesW. ACM Transactions on Graphics, 2017, 36: 1
CrossRef Google scholar
[5]
DavidD, TippetsC. IEEE Transactions on Visualization and Computer Graphics, 2017, 23: 1275
CrossRef Google scholar
[6]
ZhangY. Precision Engineering, 2019, 60: 482
CrossRef Google scholar
[7]
ChengD, WangY, XuC, SongW, JinG. Optical Express, 2014, 22: 20705
CrossRef Google scholar
[8]
ZhangN, LiuJ, HanJ, LiX, YangF, WangX, HuB, WangY. Applied Optics, 2015, 54: 3645
CrossRef Google scholar
[9]
MaimoneA, LanmanD, RathinavelK, KellerK, LuebkeD, FuchsH. SID 2018Digest, 2018, 17: 192
[10]
SugawaraM, SuzukiM, MiyauchiN. SID Display Week, 2016, 42: 164
[11]
MukawaH, AkutsuK, MatsumuraI, NakanoS. SID International Symposium Digest of Technical Papers, 2008, 39: 89
CrossRef Google scholar
[12]
MaimoneA, GeorgiouA, KollinJ S. ACM Transactions on Graphics (Tog), 2017, 36: 1
CrossRef Google scholar
[13]
LianT, MackenzieK J, BrainardD H. US Journal of Vision, 2019, 19: 23
CrossRef Google scholar
[14]
NeippC, FrancésJ, MartínezF J, FernándezR. Polymers, 2017, 9: 395
CrossRef Google scholar
[15]
KogelnikH. The Bell System Technical Journal, 1969, 48: 2909
CrossRef Google scholar
[16]
PiaoJ-A, LiG, PiaoM-L, KimN. Journal of the Optical Society of Korea, 2013, 17: 242
CrossRef Google scholar
[17]
BruderF K, FäckeT, HagenR, HönelD. Proceedings of SPIE, the International Society for Optical Engineering, 2015, 9626: 96260T
[18]
BernethH, BruderF K, FäckeT. Proceedings of SPIE, the International Society for Optical Engineering, 2014, 9006: 900602

Accesses

Citations

Detail

Sections
Recommended

/