Dynamical behavior and propagation characteristic of partially coherent sinh-Airy beams in oceanic turbulence

Yan Zhou , Ke Cheng , Bo-yuan Zhu , Na Yao , Xian-qiong Zhong

Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (1) : 59 -64.

PDF
Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (1) : 59 -64. DOI: 10.1007/s11801-021-9203-9
Article

Dynamical behavior and propagation characteristic of partially coherent sinh-Airy beams in oceanic turbulence

Author information +
History +
PDF

Abstract

By introducing the hyperbolic sine function to Airy beam, the dynamic behavior and propagation characteristics of partially coherent sinh-Airy beams in oceanic turbulence are studied using approximate analytical intensity expression. The influence of sinh modulation parameter, coherence length and ocean parameters on intensity evolution, beam width and kurtosis parameter is mainly discussed. The results show that a non-zero sinh modulation parameter presents not only the insensitivity to oceanic turbulence, but a smaller beam width. Furthermore, it also improves kurtosis parameter. These findings bring advantages in signal reception for long distance. In addition, a larger relative intensity of temperature or salinity fluctuations, mean square temperature dissipation rate, or a smaller dissipation rate of turbulence kinetic energy is more liable to increase beam width, or decrease intensity and kurtosis parameter of partially coherent sinh-Airy beams. The results provide an opportunity for improving signal reception of underwater communication or target detection by Airy beams or their groups.

Cite this article

Download citation ▾
Yan Zhou, Ke Cheng, Bo-yuan Zhu, Na Yao, Xian-qiong Zhong. Dynamical behavior and propagation characteristic of partially coherent sinh-Airy beams in oceanic turbulence. Optoelectronics Letters, 2021, 17(1): 59-64 DOI:10.1007/s11801-021-9203-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tennekes H and Lumley J L, A First Course in Turbulence, The MIT Press, 1972.

[2]

Andrews L C and Phillips R L, Laser Beam Propagation Through Random Media, SPIE Press, 152 (2005).

[3]

NikishovV V, NikishovV I. International Journal of Fluid Mechanics Research, 2000, 27: 82

[4]

MaJ, FuY L, TanL Y, YuS L, XieX L. Optica Acta: International Journal of Optics, 2018, 65: 1063

[5]

LiuD J, WangG Q, WangY C. Optics Laser Technology, 2018, 98: 309

[6]

LuW, LiuL, SunJ. Journal of Optics A: Pure and Applied Optics, 2006, 8: 1052

[7]

ZhangJ, XieJ, YeF, ZhouK, ChenX, DenD, YangX. Applied Physics B, 2018, 124: 168

[8]

HuangX, DengZ, ShiX, BaiY, FuX. Optics Express, 2018, 26: 4786

[9]

WenW, ChuX X, MaH T. Optics Communications, 2015, 336: 326

[10]

LiH H, WangJ G, TangM M, LiX Z. Journal of Modern Optics, 2018, 65: 314

[11]

ZhouY, ChengK, ZhuB Y, YaoN, ZhongX Q. Optik, 2019, 183: 656

[12]

LiuD J, WangY C. Optics & Laser Technology, 2018, 103: 33

[13]

DepasseF, PaeslerM A, CourjonD, VigoureuxJ M. Optics Letters, 1995, 20: 234

[14]

ChengM, GuoL, LiJ, HuangQ. Cheng Q and Zhang D Applied Optics, 2016, 55: 4642

[15]

SiegmanA E. Optical Resonators, 1990, 1224: 2

[16]

Martinez-HerreroR, PiqueroG, MejiasP M. Optics Communications, 1995, 115: 225

[17]

SiviloglouG A, ChristodoulidesD N. Optics Letters, 2007, 32: 979

[18]

ZhangJ B, ZhouK Z, LiangJ H, LaiZ Y. Optics Express, 2018, 26: 1290

AI Summary AI Mindmap
PDF

136

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/