Impact of the dielectric duty factor on magnetic resonance in Ag-SiO2-Ag magnetic absorber

Yu-ying Wang , Jing Li , Fu-fang Su , Xue-bo Sun , Xu Zhang , Yan Li , Xia Zhang

Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (1) : 5 -11.

PDF
Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (1) : 5 -11. DOI: 10.1007/s11801-021-9200-z
Article

Impact of the dielectric duty factor on magnetic resonance in Ag-SiO2-Ag magnetic absorber

Author information +
History +
PDF

Abstract

Magnetic absorber in optical frequency can be fulfilled through metamaterials designing. Therein, magnetic resonance in metal-dielectric-metal metasurfaces can be manipulated conveniently, and studying the parameters impacts is the primary for applications. In this work, through changing the grating width and the thickness of silica, the magnetic resonance modes have been studied, the conditions of the phase change zone from magnetic resonance (MR) to Fabry-Pérot (FP) are given out in Ag−SiO2−Ag grating magnetic metasurfaces. The results indicate that the MR mode in metal-dielectric-metal configuration is mainly decided on the dielectric duty factor other than the sole behaviors of the thickness of dielectric and size of nanostructures. The physical mechanism is elucidated through simulated electromagnetic field distributions using finite difference time domain (FDTD) solution, and numerical analysis of effective refraction index of Ag−SiO2−Ag magnetic metasurfaces. This study may prompt development of metamaterials in basic research in condensed physics and in optical devices applications.

Cite this article

Download citation ▾
Yu-ying Wang, Jing Li, Fu-fang Su, Xue-bo Sun, Xu Zhang, Yan Li, Xia Zhang. Impact of the dielectric duty factor on magnetic resonance in Ag-SiO2-Ag magnetic absorber. Optoelectronics Letters, 2021, 17(1): 5-11 DOI:10.1007/s11801-021-9200-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lagatsky A A, Kisel V E, Bain F, Brown C T A, Kuleshov N V and Sibbett W, Advances in Femtosecond Lasers Having Enhanced Efficiencies, International Conference on Lasers, Applications, and Technologies: Advanced Lasers and Systems, 67310E (2007).

[2]

BellaidiA, ErnstK, KönenkampR. MRS Proceedings, 2004, 822: S7.5

[3]

WuD, LiuY, LiR, ChenL, MaR, LiuC, YeH. Nanoscale Research Letters, 2016, 11: 483

[4]

HaoJ, WangJ, LiuX, PadilleW J, ZhouL, QiuM. Applied Physics Letters, 2010, 96: 4184

[5]

WangY, SunT, PaudelT, ZhangY, RenZ, KempaK. Nano Letters, 2012, 12: 440

[6]

ChenX, WuJ H, LiuC, CaoP. Journal of the Optical Society of America B, 2019, 36: 153

[7]

ZhangX. Optical Metamaterials, 2010, London, Springer-Verlag GmbH: 207

[8]

LonghiS. Physical Review A, 2010, 82: 031801

[9]

ZhangX, FanY, QiL, LiH. Optical Materials Express, 2016, 6: 2448

[10]

CaligiuriV, PaleiM, ImranM, ManaL, KrahneR. ACS Photonics, 2018, 5: 2287

[11]

ViktorG V. Soviet Physics Uspekhi, 1968, 10: 509

[12]

PendryJ B, HoldenA J, RobbinsD J, StewartW J. IEEE Transactions on Microwave Theory and Techniques, 1999, 47: 2075

[13]

MonticoneF, AluA. Journal of Materials Chemistry C, 2014, 2: 9059

[14]

KihmH W, KooS M, KimQ H, BaoK, KihmJ E, BakW S, EahlS H, LienauC, KimH, NordlanderP, HalasN J, ParkN K, KimD S. Nature Communications, 2011, 2: 451

[15]

LahiriB, McMeekin ScottG, Khokhar AliZ, De La Rue RichardM, Johnson NigelP. Optics Express, 2010, 18: 3210

[16]

HentschelM, SalibaM, VogelgesangR, GiessenH, AlivisatosA P, LiuN. Nano Letters, 2010, 10: 2721

[17]

FuY H, KuznetsovA I, MiroshnichenkoA E, YuY F, Luk’yanchukB. Nature Communications, 2013, 4: 1527

[18]

LiuW, AndreyE M, YuriK. Chinese Physics B, 2014, 23: 047806

[19]

WoźniakP, De LeonI, HöflichK, HaverkampC, ChristiansenS, LeuchsG, BanzerP. Optics Express, 2018, 26: 19275

[20]

JahaniS, JacobZ. Nature Nanotechnology, 2016, 11: 23

[21]

LuD Y, LiuH, LiT, WangS M, WangF M, ZhuS N, ZhangX. Physical Review B, 2008, 77: 214302

[22]

WuC, ArjuN, KelpG, FanJ A, DominguezJ, GonzalesE, TutucE, BrenerI, ShvetsG. Nature Communications, 2014, 5: 3892

[23]

YangY, KravchenkoI I, BriggsD P, JasonV. Nature Communications, 2014, 5: 5753

[24]

VasaP, WangW, PomraenkeR, LammersM, MaiuriM, ManzoniC, CerulloG, LienauC. Nature Photonics, 2013, 7: 128

[25]

AlaeianH, DionneJ A. Physical Review B, 2015, 91: 245108

[26]

ZhenB, HsuC W, IgarashiY, LuL, KaminerI, PickA, ChuaS-L, JoannopoulosJ D, SoljačićM. Nature, 2015, 525: 354

[27]

ChenH, LuoY, LiangC, LiZ, LiuS, LinA. Journal of Optics, 2018, 20: 035102

[28]

TsurimakiY, TongJ K, BoriskinV N, SemenovA, AyzatskyM I, Machekhin YuriP, ChenG, BoriskinaS V. ACS Photonics, 2018, 5: 929

[29]

HaoJ, JingW, LiuX, WillieJ, Padilla ZhouL, QiuM. Applied Physics Letters, 2010, 96: 4184

[30]

LiuN, MeschM, WeissT, MarioH, HaraldG. Nano Letters, 2010, 10: 2342

[31]

LiuH, LiG X, LiK F, ChenS M, ZhuS N, ChanC T, CheahK W. Physical Review B Condensed Matter, 2012, 84: 2461

[32]

LiuH, JackN, WangS B, LinZ F, HangZ H, ChanC T, ZhuS N. Physical Review Letters, 2011, 106: 087401

[33]

YanjunB, XingZ, ZheyuF. Scientific Reports, 2015, 5: 11793

[34]

TserkezisC, PapanikolaouN, GantzounisG, NikolaosS. Physical Review B, 2008, 78: 165114

[35]

NicolasR, LévêqueG, Marae-DjoudaJ, MontayG, MadiY, PlainJ, HerroZ, KazanM, AdamP, MaurerT. Scientific Reports, 2015, 5: 14419

[36]

ZhangX, LiuH, ZhangZ G, WangQ. Scientific Reports, 2017, 7: 41858

[37]

YitingC, JinD, MinY. Optics Express, 2014, 22: 30807

[38]

ChenH T. Optics Express, 2012, 20: 7165

[39]

MaS, XiaoS, ZhouL. Physical Review B, 2016, 93: 045305

[40]

H. Liu, Y M L, T Li, S M Wang, S N Zhu and X Zhang. Magnetic Plasmon Modes Introduced by the Coupling Effect in Metamaterials, 247 (2010).

[41]

ShiL, HakalaT K, RekolaH T, MartikainenJ P, MoerlandR J, TörmäP. Physical Review Letters, 2014, 112: 153002

[42]

LeeB J, WangL P, ZhangZ M. Optics Express, 2008, 16: 11328

[43]

CollinS, PardoF, PelouardJ L. Optics Express, 2007, 15: 4310

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/