Impact of the dielectric duty factor on magnetic resonance in Ag-SiO2-Ag magnetic absorber

Yu-ying Wang, Jing Li, Fu-fang Su, Xue-bo Sun, Xu Zhang, Yan Li, Xia Zhang

Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (1) : 5-11.

Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (1) : 5-11. DOI: 10.1007/s11801-021-9200-z
Article

Impact of the dielectric duty factor on magnetic resonance in Ag-SiO2-Ag magnetic absorber

Author information +
History +

Abstract

Magnetic absorber in optical frequency can be fulfilled through metamaterials designing. Therein, magnetic resonance in metal-dielectric-metal metasurfaces can be manipulated conveniently, and studying the parameters impacts is the primary for applications. In this work, through changing the grating width and the thickness of silica, the magnetic resonance modes have been studied, the conditions of the phase change zone from magnetic resonance (MR) to Fabry-Pérot (FP) are given out in Ag−SiO2−Ag grating magnetic metasurfaces. The results indicate that the MR mode in metal-dielectric-metal configuration is mainly decided on the dielectric duty factor other than the sole behaviors of the thickness of dielectric and size of nanostructures. The physical mechanism is elucidated through simulated electromagnetic field distributions using finite difference time domain (FDTD) solution, and numerical analysis of effective refraction index of Ag−SiO2−Ag magnetic metasurfaces. This study may prompt development of metamaterials in basic research in condensed physics and in optical devices applications.

Cite this article

Download citation ▾
Yu-ying Wang, Jing Li, Fu-fang Su, Xue-bo Sun, Xu Zhang, Yan Li, Xia Zhang. Impact of the dielectric duty factor on magnetic resonance in Ag-SiO2-Ag magnetic absorber. Optoelectronics Letters, 2021, 17(1): 5‒11 https://doi.org/10.1007/s11801-021-9200-z

References

[1]
Lagatsky A A, Kisel V E, Bain F, Brown C T A, Kuleshov N V and Sibbett W, Advances in Femtosecond Lasers Having Enhanced Efficiencies, International Conference on Lasers, Applications, and Technologies: Advanced Lasers and Systems, 67310E (2007).
[2]
BellaidiA, ErnstK, KönenkampR. MRS Proceedings, 2004, 822: S7.5
CrossRef Google scholar
[3]
WuD, LiuY, LiR, ChenL, MaR, LiuC, YeH. Nanoscale Research Letters, 2016, 11: 483
CrossRef Google scholar
[4]
HaoJ, WangJ, LiuX, PadilleW J, ZhouL, QiuM. Applied Physics Letters, 2010, 96: 4184
[5]
WangY, SunT, PaudelT, ZhangY, RenZ, KempaK. Nano Letters, 2012, 12: 440
CrossRef Google scholar
[6]
ChenX, WuJ H, LiuC, CaoP. Journal of the Optical Society of America B, 2019, 36: 153
CrossRef Google scholar
[7]
ZhangX. Optical Metamaterials, 2010, London, Springer-Verlag GmbH: 207
[8]
LonghiS. Physical Review A, 2010, 82: 031801
CrossRef Google scholar
[9]
ZhangX, FanY, QiL, LiH. Optical Materials Express, 2016, 6: 2448
CrossRef Google scholar
[10]
CaligiuriV, PaleiM, ImranM, ManaL, KrahneR. ACS Photonics, 2018, 5: 2287
CrossRef Google scholar
[11]
ViktorG V. Soviet Physics Uspekhi, 1968, 10: 509
CrossRef Google scholar
[12]
PendryJ B, HoldenA J, RobbinsD J, StewartW J. IEEE Transactions on Microwave Theory and Techniques, 1999, 47: 2075
CrossRef Google scholar
[13]
MonticoneF, AluA. Journal of Materials Chemistry C, 2014, 2: 9059
CrossRef Google scholar
[14]
KihmH W, KooS M, KimQ H, BaoK, KihmJ E, BakW S, EahlS H, LienauC, KimH, NordlanderP, HalasN J, ParkN K, KimD S. Nature Communications, 2011, 2: 451
CrossRef Google scholar
[15]
LahiriB, McMeekin ScottG, Khokhar AliZ, De La Rue RichardM, Johnson NigelP. Optics Express, 2010, 18: 3210
CrossRef Google scholar
[16]
HentschelM, SalibaM, VogelgesangR, GiessenH, AlivisatosA P, LiuN. Nano Letters, 2010, 10: 2721
CrossRef Google scholar
[17]
FuY H, KuznetsovA I, MiroshnichenkoA E, YuY F, Luk’yanchukB. Nature Communications, 2013, 4: 1527
CrossRef Google scholar
[18]
LiuW, AndreyE M, YuriK. Chinese Physics B, 2014, 23: 047806
CrossRef Google scholar
[19]
WoźniakP, De LeonI, HöflichK, HaverkampC, ChristiansenS, LeuchsG, BanzerP. Optics Express, 2018, 26: 19275
CrossRef Google scholar
[20]
JahaniS, JacobZ. Nature Nanotechnology, 2016, 11: 23
CrossRef Google scholar
[21]
LuD Y, LiuH, LiT, WangS M, WangF M, ZhuS N, ZhangX. Physical Review B, 2008, 77: 214302
CrossRef Google scholar
[22]
WuC, ArjuN, KelpG, FanJ A, DominguezJ, GonzalesE, TutucE, BrenerI, ShvetsG. Nature Communications, 2014, 5: 3892
CrossRef Google scholar
[23]
YangY, KravchenkoI I, BriggsD P, JasonV. Nature Communications, 2014, 5: 5753
CrossRef Google scholar
[24]
VasaP, WangW, PomraenkeR, LammersM, MaiuriM, ManzoniC, CerulloG, LienauC. Nature Photonics, 2013, 7: 128
CrossRef Google scholar
[25]
AlaeianH, DionneJ A. Physical Review B, 2015, 91: 245108
CrossRef Google scholar
[26]
ZhenB, HsuC W, IgarashiY, LuL, KaminerI, PickA, ChuaS-L, JoannopoulosJ D, SoljačićM. Nature, 2015, 525: 354
CrossRef Google scholar
[27]
ChenH, LuoY, LiangC, LiZ, LiuS, LinA. Journal of Optics, 2018, 20: 035102
CrossRef Google scholar
[28]
TsurimakiY, TongJ K, BoriskinV N, SemenovA, AyzatskyM I, Machekhin YuriP, ChenG, BoriskinaS V. ACS Photonics, 2018, 5: 929
CrossRef Google scholar
[29]
HaoJ, JingW, LiuX, WillieJ, Padilla ZhouL, QiuM. Applied Physics Letters, 2010, 96: 4184
[30]
LiuN, MeschM, WeissT, MarioH, HaraldG. Nano Letters, 2010, 10: 2342
CrossRef Google scholar
[31]
LiuH, LiG X, LiK F, ChenS M, ZhuS N, ChanC T, CheahK W. Physical Review B Condensed Matter, 2012, 84: 2461
[32]
LiuH, JackN, WangS B, LinZ F, HangZ H, ChanC T, ZhuS N. Physical Review Letters, 2011, 106: 087401
CrossRef Google scholar
[33]
YanjunB, XingZ, ZheyuF. Scientific Reports, 2015, 5: 11793
CrossRef Google scholar
[34]
TserkezisC, PapanikolaouN, GantzounisG, NikolaosS. Physical Review B, 2008, 78: 165114
CrossRef Google scholar
[35]
NicolasR, LévêqueG, Marae-DjoudaJ, MontayG, MadiY, PlainJ, HerroZ, KazanM, AdamP, MaurerT. Scientific Reports, 2015, 5: 14419
CrossRef Google scholar
[36]
ZhangX, LiuH, ZhangZ G, WangQ. Scientific Reports, 2017, 7: 41858
CrossRef Google scholar
[37]
YitingC, JinD, MinY. Optics Express, 2014, 22: 30807
CrossRef Google scholar
[38]
ChenH T. Optics Express, 2012, 20: 7165
CrossRef Google scholar
[39]
MaS, XiaoS, ZhouL. Physical Review B, 2016, 93: 045305
CrossRef Google scholar
[40]
H. Liu, Y M L, T Li, S M Wang, S N Zhu and X Zhang. Magnetic Plasmon Modes Introduced by the Coupling Effect in Metamaterials, 247 (2010).
[41]
ShiL, HakalaT K, RekolaH T, MartikainenJ P, MoerlandR J, TörmäP. Physical Review Letters, 2014, 112: 153002
CrossRef Google scholar
[42]
LeeB J, WangL P, ZhangZ M. Optics Express, 2008, 16: 11328
CrossRef Google scholar
[43]
CollinS, PardoF, PelouardJ L. Optics Express, 2007, 15: 4310
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/