Influence of surface optical phonon on the electronic surface states in wurtzite group-III nitride ternary mixed crystals

Gen-xiao Li, Zu-wei Yan

Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (1) : 22-28.

Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (1) : 22-28. DOI: 10.1007/s11801-021-9177-7
Article

Influence of surface optical phonon on the electronic surface states in wurtzite group-III nitride ternary mixed crystals

Author information +
History +

Abstract

An intermediate-coupling variational method is presented to investigate the surface electron states in wurtzite AxB1−xN (A, B=Al, Ga and In) ternary mixed crystals (TMCs). Corresponding effective Hamiltonian are derived by considering the surface-optical-phonon (SO-phonon) influence and anisotropic structural effect. The surface-state energies of electron, the coupling constants and the average penetrating depths of the electronic surface-state wave functions have been numerical computed as a function of the composition x and the surface potential V0 for the wurtzite AlxGa1−xN, AlxIn1−xN and InxGa1−xN, respectively. The results show that the surface-state levels of electron are reduced with the increasing of the composition x in wurtzite AxB1−xN. It is also found that the electron-surface-optical-phonon (e-SO-p) coupling lowers the surface-state energies of electron and the shifts of the electronic surface-state energy level in the wurtzite AlxGa1−xN and AlxIn1−xN increase with the increasing of the composition x. However, in the wurtzite InxGa1−xN, the case is contrary. The influence of the e-SO-p interaction on the surface electron states can not be neglected in wurtzite AxB1−xN.

Cite this article

Download citation ▾
Gen-xiao Li, Zu-wei Yan. Influence of surface optical phonon on the electronic surface states in wurtzite group-III nitride ternary mixed crystals. Optoelectronics Letters, 2021, 17(1): 22‒28 https://doi.org/10.1007/s11801-021-9177-7

References

[1]
LiZ, TanH H, JagadishC, FuL. Adv. Mater. Technol., 2018, 3: 1
[2]
LiuJH, ZhangH, ChengXL, MiyamotoY. Phys. Rev. B, 2016, 94: 5404
[3]
ZhangS, ZhangY, ChenX, GuoYN, YanJC, WangJX, LiJM. J. Semi., 2017, 11: 113002
CrossRef Google scholar
[4]
LiJ, LvY, LiCF, JiZW, PangZY, XuXG, XuMS. Chinese Phys. B, 2017, 9: 098504
CrossRef Google scholar
[5]
GuZ, BanS L, JiangD D. J. Appl. Phys., 2017, 121: 035703
CrossRef Google scholar
[6]
SinghR, DuttaM, StroscioMA, BirdwellAG, AmirtharajPM. J. Appl. Phys., 2019, 125: 205704
CrossRef Google scholar
[7]
GrilleH, SchnittlerC, BechstedtF. Phys. Rev. B, 2000, 61: 6091
CrossRef Google scholar
[8]
ShiJJ. Phys. Rev. B, 2003, 68: 165335
CrossRef Google scholar
[9]
ArmakaviciusN, StanishevV, KnightS, KuhneP, SchubertM, DarakchievaV. Appl. Phys. Lett., 2018, 112: 082103
CrossRef Google scholar
[10]
LiYL, JinP, LiuGP, WangWY, QiZQ, ChenCQ, WangZG. Chinese Phys. B, 2016, 8: 397
[11]
DavisonSG, SteslickaM. Basic Theory of Surface States, 1992, Oxford, Clarendon Press
[12]
PetrinAB. J. Exp. Theor. Phys., 2013, 116: 486
CrossRef Google scholar
[13]
KhordadR, BahramiyanH. J. Appl. Phys., 2014, 115: 124314
CrossRef Google scholar
[14]
LiGX, YanZW. Superlattices Microst., 2012, 52: 514
CrossRef Google scholar
[15]
ZhangL, ShiJ J. J. Appl. Phys., 2013, 113: 093710
CrossRef Google scholar
[16]
FanY P, HouJH. Mod. Phys. Lett. B, 2015, 29: 1550130
CrossRef Google scholar
[17]
Mora-RamosM E, VelascoV R, TutorJ. Surf. Sci., 2006, 592: 112
CrossRef Google scholar
[18]
BornM, HuangK. Dynamical Theory of Crystal Lattices, 1954, Oxford, Clarendon Press
[19]
LeeTD, LowFE, PinesD. Phys. Rev., 1953, 90: 297
CrossRef Google scholar
[20]
StriteS, MorkocH. J. Vac. Sci. Technol. B, 1992, 10: 1237
CrossRef Google scholar
[21]
VurgaftmanI, MeyerJ R, Ram-MohanL R. J. Appl. Phys., 2001, 89: 5815
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/