Deep learning enables temperature-robust spectrometer with high resolution

Jiaan Gan, Mengyan Shen, Xin Xiao, Jinpeng Nong, Fu Feng

Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (12) : 705-709.

Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (12) : 705-709. DOI: 10.1007/s11801-021-1126-y
Article

Deep learning enables temperature-robust spectrometer with high resolution

Author information +
History +

Abstract

Traditional multi-mode fiber spectrometers rely on algorithms to reconstruct the transmission matrix of the fiber, facing the challenge that the same wavelength can lead to many totally de-correlated speckle patterns as the transfer matrix changes rapidly with environment fluctuations (typically temperature fluctuation). In this manuscript, we theoretically propose a multi-mode-fiber (MMF) based, artificial intelligence assisted spectrometer which is ultra-robust to temperature fluctuation. It has been demonstrated that the proposed spectrometer can reach a resolution of 0.1 pm and automatically reject the noise introduced by temperature fluctuation. The system is ultra-robust and with ultra-high spectral resolution which is beneficial for real life applications.

Cite this article

Download citation ▾
Jiaan Gan, Mengyan Shen, Xin Xiao, Jinpeng Nong, Fu Feng. Deep learning enables temperature-robust spectrometer with high resolution. Optoelectronics Letters, 2021, 17(12): 705‒709 https://doi.org/10.1007/s11801-021-1126-y

References

[1]
KongS, WijngaardsD, WolffenbuttelR. Infrared micro-spectrometer based on a diffraction grating[J]. Sensors and actuators A: physical, 2001, 92(1–3):88-95
CrossRef Google scholar
[2]
PügnerT, KnobbeJ, GrügerH. Near-infrared grating spectrometer for mobile phone applications[J]. Applied spectroscopy, 2016, 70(5):734-745
CrossRef Google scholar
[3]
KraftM, KendaA, FrankA, et al.. Single-detector micro-electro-mechanical scanning grating spectrometer[J]. Analytical and bioanalytical chemistry, 2006, 386(5):1259-1266
CrossRef Google scholar
[4]
Faraji-DanaM, ArbabiE, ArbabiA, et al.. Compact folded metasurface spectrometer[J]. Nature communications, 2018, 9(1):1-8
CrossRef Google scholar
[5]
MurrayM J, ReddingB. Distributed multimode fiber Φ-OTDR sensor using a high-speed camera[J]. OSA continuum, 2021, 4(2):579-588
CrossRef Google scholar
[6]
San FabiánN, Socorro-LeránozA B, Del VillarI, et al.. Multimode-coreless-multimode fiber-based sensors: theoretical and experimental study[J]. Journal of lightwave technology, 2019, 37(15):3844-3850
CrossRef Google scholar
[7]
BrientinA, LeducD, GaillardV, et al.. Numerical and experimental study of a multimode optical fiber sensor based on Fresnel reflection at the fiber tip for refractive index measurement[J]. Optics & laser technology, 2021, 143: 107315
CrossRef Google scholar
[8]
SunY, LiuD, LuP, et al.. High sensitivity optical fiber strain sensor using twisted multimode fiber based on SMS structure[J]. Optics communications, 2017, 405: 416-420
CrossRef Google scholar
[9]
FengF, ChenW, ChenD, et al.. In-situ ultrasensitive label-free DNA hybridization detection using optical fiber specklegram[J]. Sensors and actuators B: chemical, 2018, 272: 160-165
CrossRef Google scholar
[10]
ChenW, FengF, ChenD, et al.. Precision non-contact displacement sensor based on the near-field characteristics of fiber specklegrams[J]. Sensors and actuators A: physical, 2019, 296: 1-6
CrossRef Google scholar
[11]
MengZ, LiJ, YinC, et al.. Multimode fiber spectrometer with scalable bandwidth using space-division multiplexing[J]. AIP advances, 2019, 9(1):015004
CrossRef Google scholar
[12]
ReddingB, PopoffS M, CaoH. All-fiber spectrometer based on speckle pattern reconstruction[J]. Optics express, 2013, 21(5): 6584-6600
CrossRef Google scholar
[13]
ReddingB, CaoH. Using a multimode fiber as a high-resolution, low-loss spectrometer[J]. Optics letters, 2012, 37(16):3384-3386
CrossRef Google scholar
[14]
ReddingB, AlamM, SeifertM, et al.. High-resolution and broadband all-fiber spectrometers[J]. Optica, 2014, 1(3):175-180
CrossRef Google scholar
[15]
KürümU, WiechaP R, FrenchR, et al.. Deep learning enabled real time speckle recognition and hyperspectral imaging using a multimode fiber array[J]. Optics express, 2019, 27(15):20965-20979
CrossRef Google scholar
[16]
RahmaniB, LoterieD, KonstantinouG, et al.. Multimode optical fiber transmission with a deep learning network[J]. Light: science & applications, 2018, 7(1):1-11
CrossRef Google scholar
[17]
WangP, DiJ. Deep learning-based object classification through multimode fiber via a CNN-architecture SpeckleNet[J]. Applied optics, 2018, 57(28):8258-8263
CrossRef Google scholar
[18]
MatjasecZ, CampeljS, DonlagicD. All-optical, thermo-optical path length modulation based on the vanadium-doped fibers[J]. Optics express, 2013, 21: 11794-11807
CrossRef Google scholar
[19]
HansenK, AlkeskjoldT, BroengJ, et al.. Thermo-optical effects in high-power ytterbium-doped fiber amplifiers[J]. Optics express, 2011, 19: 23965-23980
CrossRef Google scholar
[20]
TezvergilA, LassilaL V J, VallittuP K. The effect of fiber orientation on the thermal expansion coefficients of fiber-reinforced composites[J]. Dental materials, 2003, 19(6):471-477
CrossRef Google scholar
[21]
PradereC, SauderC. Transverse and longitudinal coefficient of thermal expansion of carbon fibers at high temperatures (300-2500K)[J]. Carbon, 2008, 46(14):1874-1884
CrossRef Google scholar
[22]
TakaoY, TayaM. The effect of variable fiber aspect ratio on the stiffness and thermal expansion coefficients of a short fiber composite[J]. Journal of composite materials, 1987, 21(2):140-156
CrossRef Google scholar
[23]
ChoiH-S, TaylorH F, LeeC E. High-performance fiber-optic temperature sensor using low-coherence interferometry[J]. Optics letters, 1997, 22(23):1814-1816
CrossRef Google scholar
[24]
HeK, ZhangX, RenS, et al.. In deep residual learning for image recognition[C], 2016, New York, IEEE: 770-778
[25]
LiX, YuL, ChangD, et al.. Dual cross-entropy loss for small-sample fine-grained vehicle classification[J]. IEEE transactions on vehicular technology, 2019, 68(5):4204-4212
CrossRef Google scholar
[26]
MaatenL V D, HintonG E. Visualizing data using t-SNE[J]. Journal of machine learning research, 2008, 9: 2579-2605

Accesses

Citations

Detail

Sections
Recommended

/