Deep learning enables temperature-robust spectrometer with high resolution
Jiaan Gan, Mengyan Shen, Xin Xiao, Jinpeng Nong, Fu Feng
Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (12) : 705-709.
Deep learning enables temperature-robust spectrometer with high resolution
Traditional multi-mode fiber spectrometers rely on algorithms to reconstruct the transmission matrix of the fiber, facing the challenge that the same wavelength can lead to many totally de-correlated speckle patterns as the transfer matrix changes rapidly with environment fluctuations (typically temperature fluctuation). In this manuscript, we theoretically propose a multi-mode-fiber (MMF) based, artificial intelligence assisted spectrometer which is ultra-robust to temperature fluctuation. It has been demonstrated that the proposed spectrometer can reach a resolution of 0.1 pm and automatically reject the noise introduced by temperature fluctuation. The system is ultra-robust and with ultra-high spectral resolution which is beneficial for real life applications.
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
/
〈 |
|
〉 |