Raman spectroscopic detection using a two-dimensional echelle spectrometer

Rui Zhang, Wenyi Ren, He Wang, Yuanyuan Wang, Zhenkun Lin, Ziqi Han

Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (11) : 641-645.

Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (11) : 641-645. DOI: 10.1007/s11801-021-1065-7
Article

Raman spectroscopic detection using a two-dimensional echelle spectrometer

Author information +
History +

Abstract

In order to meet the high-resolution and wide spectrum range of the backscattering Raman system, this paper designs and builds a Raman test system based on the echelle spectrometer. In the optical splitting system, compared with the ordinary planar grating spectrometer, the use of the echelle improves the resolution of the system without increasing the volume of the system. The use of intensified charge-coupled device (ICCD) in the detection system improves the signal-to-noise ratio (SNR) and the detection limit of weak spectrum. Finally, the Raman system was spectrally calibrated. The broadband backscattering Raman experimental results are given and discussed. The experimental results show that the system has an excellent application prospect for broadband and high-resolution Raman spectrum measurement.

Cite this article

Download citation ▾
Rui Zhang, Wenyi Ren, He Wang, Yuanyuan Wang, Zhenkun Lin, Ziqi Han. Raman spectroscopic detection using a two-dimensional echelle spectrometer. Optoelectronics Letters, 2021, 17(11): 641‒645 https://doi.org/10.1007/s11801-021-1065-7

References

[1]
RamanC V, KrishnanK S. A new type of secondary radiation[J]. Nature, 1928, 121(3048):501-502
CrossRef Google scholar
[2]
QinJ K, LiaoP Y, SiM W, et al.. Raman response and transport properties of tellurium atomic chains encapsulated in nanotubes[J]. Nature electronics, 2020, 3(3):141-147
CrossRef Google scholar
[3]
JaafrehS, VallerO, KreyenschmidtJ, et al.. In vitro discrimination and classification of microbial flora of poultry using two dispersive Raman spectrometers (microscope and portable fiber-optic systems) in tandem with chemometric analysis[J]. Talanta, 2019, 202: 411-425
CrossRef Google scholar
[4]
HoyosL S, FaroldiB, CornagliaL. Reactivity of rice husk-derived lithium silicates followed by in situ Raman spectroscopy[J]. Journal of alloys and compounds, 2019, 778(25):699-711
CrossRef Google scholar
[5]
LiuJ L, Bayanheshig, QiX D, et al.. Backscattering Raman spectroscopy using multigrating spatial heterodyne Raman spectrometer[J]. Applied optics, 2018, 57(33):9735-9745
CrossRef Google scholar
[6]
QiuS F, LiM M, LiuJ, et al.. Study on the chemodrug-induced effect in nasopharyngeal carcinoma cells using laser tweezer Raman spectroscopy[J]. Biomedical optics express, 2020, 11(4):1819-1833
CrossRef Google scholar
[7]
AlattarN, DaudH, MajmaieR A, et al.. Surface-enhanced Raman scattering for rapid hematopoietic stem cell differentiation analysis[J]. Applied optics, 2018, 57(22):E184-E189
CrossRef Google scholar
[8]
AymenM, SamiS, AhmedS, et al.. Correlation between Raman spectroscopy and electrical conductivity of graphite/polyaniline composites reacted with hydrogen peroxide[J]. Journal of physics D: applied physics, 2013, 46(33):335103
CrossRef Google scholar
[9]
HeulerJ, HeS, AmbardarS, et al.. Point-of-care detection, characterization, and removal of chocolate bloom using a handheld Raman spectrometer[J]. Scientific reports, 2020, 10(1): 9833
CrossRef Google scholar
[10]
HuG X, XiongW, ShiH L, et al.. Raman spectroscopic detection using a two dimensional spatial heterodyne spectrometer[J]. Optical engineering, 2015, 54(11): 114101
CrossRef Google scholar
[11]
FosterM J, StoreyJ, ZentileM A. Spatial heterodyne spectrometer for transmission Raman observations[J]. Optics express, 2017, 25(2): 1598-1604
CrossRef Google scholar
[12]
QiuJ, QiX D, LiX T, et al.. Development of a spatial heterodyne Raman spectrometer with echelle-mirror structure[J]. Optics express, 2018, 26(9):11994-12006
CrossRef Google scholar
[13]
ZhangR, Bayanheshig, YinL, et al.. Wavelength calibration model for prism-type echelle spectrometer by reversely solving prism’s refractive index in real time[J]. Applied optics, 2016, 55(15):4153-4158
CrossRef Google scholar
[14]
YinL, Bayanheshig, YangJ, et al.. High-accuracy spectral reduction algorithm for the echelle spectrometer[J]. Applied optics, 2016, 55(13):3574-3581
CrossRef Google scholar
[15]
ZhangR, Bayanheshig, LiX T, et al.. Establishment and correction of an echelle cross-prism spectrogram reduction model[J]. Optics communications, 2017, 403: 401-407
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/