Performance simulation of space-based coherent wind LIDAR system under various meteorological conditions

Fengrui Zhang , Sibo Zhang , Lei Wang

Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (6) : 342 -348.

PDF
Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (6) : 342 -348. DOI: 10.1007/s11801-021-1051-0
Article

Performance simulation of space-based coherent wind LIDAR system under various meteorological conditions

Author information +
History +
PDF

Abstract

A coherent detection Doppler wind lidar (CDWL) system simulation for both ground-based and space-based platforms is established in this study by using the PcModwin and BACKSCAT software to construct an atmospheric model in autumn and winter. Based on the light detection and ranging (LIDAR) equation, the balanced coherent detection principle, the error theory, and the calculation of signal-to-noise ratio (SNR), the truncation ratio and the single pulse energy under different conditions were optimized. Meanwhile, the wind speed error and the wind direction error of the space-based platform were determined. The simulation results indicate that at an orbit height of 400 km, with the pulse energy at 225 mJ, and the telescope aperture at 1 m, the space-based coherent wind LIDAR could detect the wind speed at the altitude of 0–5 km, and the maximum horizontal wind speed error was 3.7 m/s.

Cite this article

Download citation ▾
Fengrui Zhang, Sibo Zhang, Lei Wang. Performance simulation of space-based coherent wind LIDAR system under various meteorological conditions. Optoelectronics Letters, 2021, 17(6): 342-348 DOI:10.1007/s11801-021-1051-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Fujii T and Fukuchi T, Laser Remote Sensing, CRC Press, 469 (2005).

[2]

HuangM, GaoZ, MiaoS, ChenF, LeMoneM A, LiJ, HuF, WangL. Boundary-Layer Meteorology, 2017, 162: 503

[3]

GuyP, FayD, ChrisC. Journal of Atmospheric and Oceanic Technology, 2009, 26: 240

[4]

FuminM, YongC, ZehouY, DingfuZ, XiaofengL, ChunliC, LitianF, ChenY. Laser & Optoelectronics Progress, 2019, 18: 31(in Chinese)

[5]

YanzongZ, ChongW, YanpingL, HaiyunX. Laser & Optoelectronics Progress, 2019, 56: 020001 in Chinese)

[6]

Bing-longC, Zhong-dongY, MinM, Ji-qiaoL, Yi-mingZ, FuW. Laser & Optoelectronics Progress, 2020, 57: 38(in Chinese)

[7]

Kavaya MichaelJ, Beyon JeffreyY, Koch GradyJ, PetrosM, Petzar PaulJ, Singh UpendraN, Trieu BoC, YuJ. Journal of Atmospheric and Oceanic Technology, 2014, 31: 826

[8]

LuxO, LemmerzC, WeilerF, MarksteinerU, WitschasB, RahmS, GeriβA, ReitebuchO. Atmospheric Measurement Techniques, 2020, 13: 2075

[9]

MartinA, WeissmannM, ReitebuchO, RennieM, GeiβA, CressA. Atmospheric Measurement Techniques, 2021, 14: 2167

[10]

GrecoS, Emmitt GeorgeD, DuVivierA, HinesK, KavayaM. Atmosphere, 2020, 11: 1141

[11]

GrecoS, Emmitt GeorgeD, GarstangM, KavayaM. Remote Sensing, 2020, 12: 2951

[12]

IshiiS, BaronP, AokiM, MizutaniK, YasuiM, OchiaiS, SatoA, SatohY, KubotaT, SakaizawaD, OkiR, OkamotoK, IshibashiT, TanakaT Y, SekiyamaT T, MakiT, YamashitaK, NishizawaT, SatohM, IwasakiT. Journal of the Meteorological Society of Japan, 2017, 95: 301

[13]

NewsomR K, Alan BrewerW, WilczakJ M, WolfeD E, OncleyS P, LundquistJ K. Atmospheric Measurement Techniques, 2017, 10: 1229

[14]

XiaochunZ, SonghuaW, BingyiL, XiaoquanS, JiapingY. Atmospheric Measurement Techniques, 2018, 11: 1313

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/