Long dynamic range spread spectrum optical domain reflectometer

Fang Zhang, Hongling Zhang, Yuefeng Qi, Wei Li

Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (11) : 651-655.

Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (11) : 651-655. DOI: 10.1007/s11801-021-1050-1
Article

Long dynamic range spread spectrum optical domain reflectometer

Author information +
History +

Abstract

The performance of an optical time domain reflectometer (OTDR) is significantly improved using spread spectrum technology. The concept of spread spectrum OTDR (SSOTDR) is proposed, the theoretical basis and simulation results of the new method are given, and the problem of direct application of bipolar spread spectrum codes to OTDR and despreading in the optical domain are solved. The simulation results show the feasibility of the SSOTDR, which exhibits better dynamic range reported to date for a practical long-haul OTDR system without using conventional average technique.

Cite this article

Download citation ▾
Fang Zhang, Hongling Zhang, Yuefeng Qi, Wei Li. Long dynamic range spread spectrum optical domain reflectometer. Optoelectronics Letters, 2021, 17(11): 651‒655 https://doi.org/10.1007/s11801-021-1050-1

References

[1]
NyarkoB O, AdekoyaA F, WeyoriB A. Predicting the actual location of faults in underground optical networks using linear regression[J]. Engineering reports, 2021, 3(2):e12304
[2]
NakamuraA, OhashiM, OdaT, et al.. Simple technique for measuring optical properties of randomly coupled multi-core fiber using OTDR[J]. IEICE communications express, 2020, 10(3): 177-185
[3]
CHEN S L, YE C G, CHEN S B. Automatic monitoring system for dumping site slope based on OTDR & GBMS[J]. Dam and safety, 2020(1): 26–31. (in Chinese)
[4]
EgorL, DanielG, ShmuelS. Detuned Brillouin amplification of OTDR signals with an enhanced signal-to-noise ratio[J]. Optics letters, 2017, 42(27):5166-5169
[5]
MosheN, StevenA N, RobinP G, et al.. Real-time long range complementary correlation optical time domain reflectometer[J]. Journal of lightwave technology, 1989, 7(1):24-38
CrossRef Google scholar
[6]
SahuP K, GowreS C, MahapatraS. Optical time-domain reflectometer performance improvement using complementary correlated prometheus orthonormal sequence[J]. IET optoelectron, 2008, 2(3):128-133
CrossRef Google scholar
[7]
IidaH, KoshikiyaY, ItoF, et al.. High sensitivity coherent optical time domain reflectometry employing frequency division multiplexing[J]. Journal of lightwave technology, 2012, 30(8):1121-1126
CrossRef Google scholar
[8]
RenataG, AmosA, MosheN. Direct detection and coherent optical time-domain reflectometry with Golay complementary codes[J]. Journal of lightwave technology, 2013, 31(13):2207-2222
CrossRef Google scholar
[9]
JonesM D. Using simplex codes to improve OTDR sensitivity[J]. IEEE photonics technology letters, 1993, 5(7):822-824
CrossRef Google scholar
[10]
ZhangX P, QiaoW Y, SunZ H, et al.. A distributed optical fiber sensing system for synchronous vibration and loss measurement[J]. Optoelectronics letters, 2016, 12(5):375-377
CrossRef Google scholar
[11]
ZhangF, QiY F, LiW. Using optical differential phase-shift keying to solve the bipolarity problem of spreading code in optical time domain reflectometer[J]. Results in physics, 2019, 13: 102096
CrossRef Google scholar
[12]
QiaoY Z, LuZ H, YanB L, et al.. Performance of differential phase shift keying maritime laser communication over log-normal distribution turbulence channel[J]. Optoelectronics letters, 2021, 17(2):90-95
CrossRef Google scholar
[13]
ShiehW, YangQ, MaY. 107 Gb/s coherent optical OFDM transmission over 1000-km SSMF fiber using orthogonal band multiplexing[J]. Optics express, 2008, 16(9):6378-6386
CrossRef Google scholar
[14]
FatemehS, DavidP, MichaëlM, et al.. DPSK modulation with a dual-drive silicon photonic loop-mirror modulator[J]. IEEE photonics technology letters, 2019, 31(13):1037-1040
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/