Improved performance of CdSe/ZnS quantum dot light-emitting diodes through doping with small molecule CBP
Yuhan Lin, Ye Huang, Qianpeng Zhu, Genggeng Zhang, Juntao Hu
Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (11) : 656-660.
Improved performance of CdSe/ZnS quantum dot light-emitting diodes through doping with small molecule CBP
The poor film formation of CdSe/ZnS quantum dots (QDs) during spin-coating makes a substantial impact on the device performance of quantum dot light-emitting diodes (QLEDs). This work proposes a method to improve the morphology of the quantum dot light-emitting layer (EML) by adding small organic molecular 4,4′-Bis(9H-carbazol-9-yl) biphenyl (CBP) into the layer. Its surface roughness reduces from 6.21 nm to 2.71 nm, which guarantees a good contact between hole transport layer (HTL) and EML. Consequently, the CdSe/ZnS QDs:CBP based QLED achieves maximum external quantum efficiency (EQE) of 5.86%, and maximum brightness of 10 363 cd/m2. It is demonstrated that the additive of small organic molecules could be an effective way to improve the brightness and the efficiency of QLEDs.
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
/
〈 |
|
〉 |