Design analysis for ultra-low crosstalk in high core count heterogeneous multicore fiber

Dablu Kumar , Rakesh Ranjan

Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (10) : 616 -621.

PDF
Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (10) : 616 -621. DOI: 10.1007/s11801-021-1013-6
Optoelectronics Letters

Design analysis for ultra-low crosstalk in high core count heterogeneous multicore fiber

Author information +
History +
PDF

Abstract

Design analysis of high core count (36-core, 37-core) un-coupled multicore fiber (MCF) using the heterogeneous core has been proposed, to achieve the high spatial efficiency and ultra-low crosstalk (∼−81 dB/100 km) under the limited cladding diameter of 300 µm. To realize the ultra-low crosstalk level between the neighboring cores, the combination of two crosstalk reduction approaches, trench-assisted (TA) core and propagation direction interleaving (PDI) technique has been used. The forward and backward crosstalk characterizations have been studied in heterogeneous MCF with respect to fiber bending radius, wavelength, transmission distance, and core-pitch with both normal step-index and trench-assisted cores under single-mode propagation condition.

Cite this article

Download citation ▾
Dablu Kumar, Rakesh Ranjan. Design analysis for ultra-low crosstalk in high core count heterogeneous multicore fiber. Optoelectronics Letters, 2021, 17(10): 616-621 DOI:10.1007/s11801-021-1013-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

DesurvireE B. Journal of Lightwave Technology, 2006, 24: 4697

[2]

SaitohK, MatsuoS. Journal of Lightwave Technology, 2016, 34: 55

[3]

KoshibaM, SaitohK. IEEE Photonics Journal, 2012, 4: 1987

[4]

KumarD, RanjanR. Optical Fiber Technology, 2018, 41: 95

[5]

YeF, TuJ, SaitohK, MoriokaT. Optics Express, 2014, 22: 23007

[6]

SanoA, TakaraH, KobayashiT, MiyamotoY. Journal of Lightwave Technology, 2014, 32: 2771

[7]

KoshibaM, SaitohK, TakenagaK, MatsuoS. Optics Expres, 2011, 19: B102

[8]

SakaguchiJ, KlausW, MendinuetaJ M D, PuttnamB J, LuísR S, AwajiY, WadaN, HayashiT, NakanishiT, WatanabeT, KokubunY, TakahataT, KobayashiT. Journal of Lightwave Technology, 2016, 34: 93

[9]

FujisawaT, AmmaY, SasakiY, MatsuoS, AikawaK, SaitohK, KoshibaM. IEEE Photonics Journal, 2017, 9: 7204108

[10]

KumarD, RanjanR. Quantum Electronics, 2019, 49: 1045

[11]

OkamotoK. Fundamentals of Optical Waveguides, 2006, San Diego, USA, Academic Press: 183

[12]

ChanF Y M, LauA P T, TamH-Y. Optics Express, 2012, 20: 4548

[13]

KumarD, RanjanR. Optoelectronics Letters, 2020, 16: 126

[14]

HayashiT, TaruT, ShimakawaO, SasakiT, SasaokaE. Optical Express, 2011, 19: 16576

[15]

KumarD, RanjanR. Optical Engineering, 2019, 58: 056109

[16]

KumarD, RanjanR. Journal of Optical Communications, 2021, 42: 1

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/