Improved light coupling efficiency of organic light-emitting diode and polymer optical waveguide integrated device by grating coupler

Song Wei, Chang Liu, Houyun Qin, Yiming Liu, Changming Chen, Hongbo Wang, Yi Zhao

Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (10) : 598-603.

Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (10) : 598-603. DOI: 10.1007/s11801-021-1011-8
Optoelectronics Letters

Improved light coupling efficiency of organic light-emitting diode and polymer optical waveguide integrated device by grating coupler

Author information +
History +

Abstract

In this work, the light coupling efficiency of organic light-emitting diode (OLED) and polymer optical waveguide integrated device was improved by the grating coupler. To maximize light coupling efficiency, the grating coupler was optimized by finite-difference time-domain (FDTD) method. Based on the simulation results, the grating coupler was fabricated via laser interference lithography process and an OLED was integrated on the surface of it. Comparing the integrated devices without and with grating coupler, light coupling efficiency of the grating-based integrated device was improved by about 5%. The proposed integrated device has the potential application for low-cost and flexible monolithic optical sensors.

Cite this article

Download citation ▾
Song Wei, Chang Liu, Houyun Qin, Yiming Liu, Changming Chen, Hongbo Wang, Yi Zhao. Improved light coupling efficiency of organic light-emitting diode and polymer optical waveguide integrated device by grating coupler. Optoelectronics Letters, 2021, 17(10): 598‒603 https://doi.org/10.1007/s11801-021-1011-8

References

[1]
ZhaoG, DongH, LiaoQ, JiangJ, LuoY, FuH, HuW. Nature Communications, 2018, 9: 4790
CrossRef Google scholar
[2]
RahlvesM, GuentherA, RezemM, RothB. Journal of Lightwave Technology, 2019, 37: 729
CrossRef Google scholar
[3]
EstevezM C, AlvarezM, LechugaL M. Laser & Photonics Reviews, 2012, 6: 463
CrossRef Google scholar
[4]
WashburnA L, BaileyR C. Analyst, 2011, 136: 227
CrossRef Google scholar
[5]
VenkatramanV, StecklA J. Biosensors & Bioelectronics, 2015, 74: 150
CrossRef Google scholar
[6]
KimY, ParkS, ParkS K, YunS, KyungK U, SunK. Optics Express, 2012, 20: 14486
CrossRef Google scholar
[7]
M. Punke, S. Mozer, M. Stroisch, M. Gerken, G. Bastian, U. Lemmer, D. G. Rabus and P. Henzi, Organic Semiconductor Devices for Micro-Optical Applications, Micro-Optics, Vcsels, and Photonic Interconnects II: Fabrication, Packaging, and Integration, Conference on Micro-Optics, VCSELs, and Photonic Interconnects II, 6185 (2006).
[8]
DelezoideC, SalsacM, LautruJ, LehH, NoguesC, ZyssJ, BuckleM, Ledoux-RakI, NguyenC T. IEEE Photonics Technology Letters, 2012, 24: 270
CrossRef Google scholar
[9]
LamprechtB, DitibacherH, JakopicG, KrennJ R. Physica Status Solidi-Rapid Research Letters, 2008, 2: 266
CrossRef Google scholar
[10]
JacobMV. Electronics, 2014, 3: 594
CrossRef Google scholar
[11]
DiezM, RaimbaultV, JolyS, OyhenartL, DoucetJ B, ObietaI, DejousC, BechouL. Optical Materials, 2018, 82: 21
CrossRef Google scholar
[12]
OhmoriY, KajiiH, KanekoM, YoshinoK, OzakiM, FujiiA, HikitaM, TakenakaH, TanedaT. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10: 70
CrossRef Google scholar
[13]
LinY-Y, ChengC, LiaoH-H, HorngS-F, MengH-F, HsuC-S. Applied Physics Letters, 2006, 89: 379
[14]
DuvalD, Gonzalez-GuerreroA B, DanteS, OsmondJ, MongeR, FernandezL J, ZinovievK E, DominguezC, LechugaL M. Lab on a Chip, 2012, 12: 1987
CrossRef Google scholar
[15]
PustelnyT, StrukP. Opto-Electronics Review, 2012, 20: 201
CrossRef Google scholar
[16]
SakamotoJ, HashimotoT, KawataH, HiraiY. Journal of Photopolymer Science and Technology, 2019, 32: 15
CrossRef Google scholar
[17]
XinY, PandraudG, ZhangY M, FrenchP. Sensors, 2019, 19: 12
[18]
ProkopC, SchoenhardtS, LaegelB, WolffS, MitchellA, KarnutschC. Journal of Lightwave Technology, 2016, 34: 3966
CrossRef Google scholar
[19]
SinghR, SinghR R, PriyeV. Optical and Quantum Electronics, 2019, 51: 10
CrossRef Google scholar
[20]
LiP, DornA, RezemM, HonnefK, ZappeH. Applied Optics, 2018, 57: 5161
CrossRef Google scholar
[21]
RaghuwanshiS K. Indian Journal of Physics, 2010, 84: 831
CrossRef Google scholar
[22]
AkinU, SafakH. Journal of Alloys and Compounds, 2015, 647: 146
CrossRef Google scholar
[23]
TaillaertD, Van LaereF, AyreM, BogaertsW, VanThourhoutD, BienstmanP, BaetsR. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 2006, 45: 6071
[24]
ZhangC, SunJ H, XiaoX, SunW M, ZhangX J, ChuT, YuJ Z, YuY D. Chinese Physics Letters, 2013, 30: 4
[25]
LuM H, SturmJ C. Journal of Applied Physics, 2002, 91: 595
CrossRef Google scholar
[26]
HuangC Y, ZhangX P, WangJ S, HongC Y. Advanced Optical Materials, 2018, 6: 9
[27]
SkriniarovaJ, PudisD, MartincekI, KovacJ, TarjanyiN, VeselyM, TurekI. Microelectronics Journal, 2007, 38: 746
CrossRef Google scholar
[28]
VenkatakrishnanK, JariwalaS, TanB. Optics Express, 2009, 17: 2756
CrossRef Google scholar
[29]
DongY, SunY M, LiY F, YuX Q, HouX Y, ZhangX. Thin Solid Films, 2008, 516: 1214
CrossRef Google scholar
[30]
RamuzM, BuergiL, StanleyR, WinnewisserC. Journal of Applied Physics, 2009, 105: 4652
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/