Q-switched pulse generation in a bidirectionally pumped EDFL utilizing Lu2O3 as saturable absorber

Nur F. Zulkipli , Ahmad H. A. Rosol , Serif Ali Sadik , Firat E. Durak , Ahmet Altuncu , Moh Yasin , Sulaiman W. Harun

Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (9) : 529 -533.

PDF
Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (9) : 529 -533. DOI: 10.1007/s11801-021-1001-x
Article

Q-switched pulse generation in a bidirectionally pumped EDFL utilizing Lu2O3 as saturable absorber

Author information +
History +
PDF

Abstract

In this paper, we have successfully demonstrated a Q-switched pulse generation utilizing lutetium oxide (Lu2O3) thin film based saturable absorber (SA) in all-fiber erbium-doped fiber laser (EDFL) cavity with a bidirectional pumping. The Lu2O3 powder is mixed with isopropyl alcohol (IPA) solution before we add polyvinyl alcohol (PVA) as our host polymer to make the Lu2O3 into a thin film. By inserting the Lu2O3-PVA thin film into a bidirectional pumped EDFL cavity, a stable Q-switched pulse is realized with repetition rate in a range of rose from 43.67 kHz to 57.74 kHz whereas the pulse width decreased from 14.48 µs to 11.20 µs. This result indicates that the Lu2O3 can be implemented as an SA device in an EDFL as it owns a linear absorption of around 3 dB at 1 567 nm.

Cite this article

Download citation ▾
Nur F. Zulkipli, Ahmad H. A. Rosol, Serif Ali Sadik, Firat E. Durak, Ahmet Altuncu, Moh Yasin, Sulaiman W. Harun. Q-switched pulse generation in a bidirectionally pumped EDFL utilizing Lu2O3 as saturable absorber. Optoelectronics Letters, 2021, 17(9): 529-533 DOI:10.1007/s11801-021-1001-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AdachiS, KoyamadaY. Journal of Lightwave Technology, 2002, 20: 1506

[2]

GoelA. Indian Journal of Dermatology, Venereology, and Leprology, 2008, 74: 682

[3]

SharmaU, KimC-S, KangJ U. IEEE Photonics Technology Letters, 2004, 16: 1277

[4]

SkorczakowskiM, SwiderskiJ, PicholaW, NygaP, ZajacA, MaciejewskaM, GaleckiL, KasprzakJ, GrossS, HeinrichA, BragagnT. Laser Physics Letters, 2010, 7: 498

[5]

El-SherifA F, KingT A. Optics Communications, 2003, 218: 337

[6]

YuH, ZhangH, WangZ, WangJ, YuY, ShaoZ, JiangM, ZhangX. Applied Physics Letters, 2007, 90: 231110

[7]

WangM, ChenC, HuangC, ChenH. Optik, 2014, 125: 2154

[8]

WangZ T, ChenY, ZhaoC J, ZhangH, WenS C. IEEE Photonics Journal, 2012, 4: 869

[9]

LiuJ, XuJ, WangP. Optics Communications, 2012, 285: 5319

[10]

MarkomA M, LatiffA A, MuhammadA R, YusoffZ M, PaulM, DharA, DasS, HarunS W. Journal of Optoelectronics and Advanced Materials, 2020, 14: 1

[11]

HarisH, HarunS W, YupapinP, ArofH, ApsariR. Nonlinear Optics Quantum Optics-Concepts in Modern Optics, 2020, 52: 111

[12]

CuiY, LiuX. Optics Express, 2013, 21: 18969

[13]

MengY, SemaanG, SalhiM, NiangA, GuesmiK, LuoZ, SanchezF. Optics Express, 2015, 23: 23053

[14]

WuK, ChenB, ZhangX, ZhangS, GuoC, LiC, XiaoP, WangJ, ZhouL, ZouW, ChenJ. Optics Communications, 2018, 406: 214

[15]

LuoZ-C, WangF-Z, LiuH, LiuM, TangR, LuoA-P, XuW-C. Optical Engineering, 2016, 55: 081308

[16]

LiuW, LiuM, OuYangY, HouH, LeiM, WeiZ. Nanotechnology, 2018, 29: 394002

[17]

KumarG. Journal of Nonlinear Optical Physics & Materials, 2003, 12: 367

[18]

ZulkipliN F, SamsamnunF S M, RosolH, AltuncuA, RusdiM F M, MahyuddinM B H, KhudusM I M A, HanafiE, HarunS W. Fiber and Integrated Optics, 2020, 39: 137

[19]

YusoffR A M, JafryA A A, KasimN, ZulkipliN F, SamsamnunF S M, YasinM, HarunS W. Optical Fiber Technology, 2020, 57: 102209

[20]

ChenY, JiangG, ChenS, GuoZ, YuX, ZhaoC, ZhangH, BaoQ, WenS, TangD, FanD. Optics Express, 2015, 23: 12823

[21]

LuoZ, HuangY, ZhongM, LiY, WuJ, XuB, XuH, CaiZ, PengJ, WengJ. Journal of Lightwave Technology, 2014, 32: 4077

[22]

ZulkipliN F, MalathyB, SamsamnunF S M, MahyuddinM B H, IzamT F T M N, KhudusI M A, HarunS W. Microwave and Optical Technology Letters, 2020, 62: 1049

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/