Design of zero cross correlation variable weight codes for multimedia services based on magic square in SAC-OCDMA systems

Zhuo Lu, Ye Lu, Chuanqi Li

Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (9) : 539-545.

Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (9) : 539-545. DOI: 10.1007/s11801-021-0198-z
Article

Design of zero cross correlation variable weight codes for multimedia services based on magic square in SAC-OCDMA systems

Author information +
History +

Abstract

A variable weight address code based on spectrum amplitude coding (SAC) is proposed for optical code division multiple access (OCDMA) networks to support different quality of service (QoS) requirements of different services. The zero cross-correlation magic square variable weight optical orthogonal code (ZMS-VWOOC) proposed in this paper has great flexibility in terms of code weight and number of users. Zero cross-correlation can eliminate the influence of multiple access interference (MAI) and reduce the system complexity. Numerical results show that ZMS-VWOOC can provide better quality of service than similar codes. Numerical results for a ZMS-VWOOC OCDMA network designed for triple-play services operating at 0.622 Gbit/s, 2 Gbit/s, 2.5 Gbit/s and 3 Gbit/s are considered.

Cite this article

Download citation ▾
Zhuo Lu, Ye Lu, Chuanqi Li. Design of zero cross correlation variable weight codes for multimedia services based on magic square in SAC-OCDMA systems. Optoelectronics Letters, 2021, 17(9): 539‒545 https://doi.org/10.1007/s11801-021-0198-z

References

[1]
Ghafouri-Shiraz H and Karbassian M M, Optical CDMA Networks: Principles, Analysis and Applications, Wiley-IEEE Press, 2012.
[2]
AhmedH Y, ZeghidM, ImtiazW A, ShariefY, AbdallaO M. Optical Fiber Technology, 2020, 58: 102232
CrossRef Google scholar
[3]
TaiwoA, SeyedzadehS, TaiwoS, SahbudinR K Z, YaacobM H, MokhtarM. Optik, 2014, 125: 4803
CrossRef Google scholar
[4]
M Moghaddasi, S Seyedzadeh and S B Ahmad Anas, Optical Code Division Multiple Access Codes Comparison in Free Space Optics and Optical Fiber Transmission Medium, IEEE Region 10 Symposium, 181 (2014).
[5]
NawawiN M, AnuarM S, JunitaM N. Optik, 2018, 170: 220
CrossRef Google scholar
[6]
XingyuY, LitingH, HelongW, YuanqingW. Optics and Lasers in Engineering, 2020, 129: 106066
CrossRef Google scholar
[7]
WongE. Journal of Lightwave Technology, 2012, 30: 597
CrossRef Google scholar
[8]
YangC. Optical Fiber Technology, 2008, 14: 134
CrossRef Google scholar
[9]
LeeT S, ShalabyH M, GhafourishirazH. Optics and Laser Technology, 2001, 33: 573
CrossRef Google scholar
[10]
P R Prucnal, Optical Code Division Multiple Access: Fundamentals and Applications, CRC Taylor & Francis, 2006.
[11]
MaricS V, MorenoO, CorradaC J. Journal of Lightwave Technology, 1996, 14: 2149
CrossRef Google scholar
[12]
Chung J and Yang K, Three New Families of Optimal Variable-Weight Optical Orthogonal Codes, IEEE International Symposium on Information Theory, 1546 (2015).
[13]
AnasS B, QuinlanT, WalkerS D. IET Optoelectronics, 2010, 4: 46
CrossRef Google scholar
[14]
NasaruddinS, TsujiokaT. Computer Networks, 2008, 52: 2077
CrossRef Google scholar
[15]
WeinbergG V. Electronics Letters, 2008, 44: 217
CrossRef Google scholar
[16]
AhmedH Y. Photonic Network Communications, 2014, 28: 102
CrossRef Google scholar
[17]
Seyedzadeh S, Sahbudin R K and Abas A F, Weight optimization of Variable Weight OCDMA for triple-play services, IEEE International Conference on Photonics, 99 (2013).
[18]
SeyedzadehS, RahimianF P, GleskI, KakaeeM H. Optical Fiber Technology, 2017, 37: 53
CrossRef Google scholar
[19]
Alkhafaji H M, Aljunid S A, Amphawan A and Fadhil H A, Triple-Play Services Using Different Detection Techniques for SAC-OCDMA Systems, IEEE International Conference on Photonics, 350 (2012).
[20]
SahbudinR K, AbdullahM K, MokhtarM. Optical Fiber Technology, 2009, 15: 266
CrossRef Google scholar
[21]
KumawatS, Ravi KumarM. Optical Fiber Technology, 2016, 30: 72
CrossRef Google scholar
[22]
JellaliN, NajjarM, FerchichiM, RezigH. Optical Fiber Technology, 2017, 36: 26
CrossRef Google scholar
[23]
KumawatS, MaddilaR K. Optical Fiber Technology, 2017, 39: 12
CrossRef Google scholar
[24]
TsengS, WuJ. IEEE Journal on Selected Areas in Communications, 2010, 28: 827
CrossRef Google scholar
[25]
AbdT H, AljunidS A, FadhilH A, AhmadR A, SaadN M. Optical Fiber Technology, 2011, 17: 273
CrossRef Google scholar
[26]
KadhimR A, FadhilH A, AljunidS A, RazalliM S. Optics Communications, 2014, 329: 28
CrossRef Google scholar
[27]
CherifiA, JellaliN, NajjarM, AljunidS A, BouazzaB S. Optics and Laser Technology, 2018, 109: 233
CrossRef Google scholar
[28]
KakaeeM H, SeyedzadehS, FadhilH A, AnasS B A, MokhtarM. Optics and Laser Technology, 2014, 60: 49
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/