A comparative study of a direct and pulse electrode-position method of TiO2 films and its effect on photo-electrocatalytic degradation of methyl orange dye

Khadidja Hadj Larbi , Farid Habelhames , Meriem Lakhdari , Farid Bennabi , Belkacem Nessark , Mehdi Adjdir , Abdelkader Echchergui Nebatti , Bouhalouane Amrani

Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (6) : 334 -341.

PDF
Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (6) : 334 -341. DOI: 10.1007/s11801-021-0193-4
Article

A comparative study of a direct and pulse electrode-position method of TiO2 films and its effect on photo-electrocatalytic degradation of methyl orange dye

Author information +
History +
PDF

Abstract

The present study reports the titanium dioxide (TiO2) films synthesized from TiCl3 precursor on ITO glass substrates using two electrochemical techniques, namely direct electro-deposition (DE) and pulse electro-deposition (PE). The synthesis potential during the time-on (Ton) period was fixed at −1.5 V. However, the open-circuit potential was applied during the time-off (Toff) period. The effect of the technique of electro-deposition and Toff duration on the properties of TiO2 films and their photoelectron-catalytic activity were investigated. The obtained films were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-VIS spectrometer, and photocurrent measurement respectively. It is found that the use of the PE technique at different Toff improves the properties of TiO2 films compared to the DE technique. The XRD patterns show the anatase phase with a marked preferential orientation along the (101) direction for all samples. From the SEM analysis, it is seen a significant change from big multigrain agglomerates at DE to a dense film structure and small multigrain agglomerates at different Toff. As the Toff decreases from 3 s to 1 s, the photocurrent response rises and reaches a high value of about 12 mA/cm2. Compared with DE, and under UV light the photocatalytic property of TiO2 film synthesis via PE has been improved in the degradation of methyl orange (MO). Finally, the films deposited at low Toff (Toff = 1 s) show a faster degradation of MO.

Cite this article

Download citation ▾
Khadidja Hadj Larbi, Farid Habelhames, Meriem Lakhdari, Farid Bennabi, Belkacem Nessark, Mehdi Adjdir, Abdelkader Echchergui Nebatti, Bouhalouane Amrani. A comparative study of a direct and pulse electrode-position method of TiO2 films and its effect on photo-electrocatalytic degradation of methyl orange dye. Optoelectronics Letters, 2021, 17(6): 334-341 DOI:10.1007/s11801-021-0193-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Scarpelli F., Mastropietro T., Poerio T. and Godbert N., Mesoporous TiO2 Thin Films: State of the Art, Titanium Dioxide-Material for a Sustainable Environment, 57 (2018).

[2]

Teferi B., Schnupf U., Manseki K., Sugiura T. and Vafaei S., Synthesis and Deposition of Rutile TiO2 for Dye-Sensitized Solar Cell Applications, In ASME International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, V006T006A093 (2019).

[3]

ZhangY, ChenJ, HouG, LiD, WuY, XuJ, XuL, ChenK. Optics Express, 2020, 28: 6064

[4]

WoodsR, SearleJ, PursgloveA, WorsleyD. Journal of Environmental Chemical Engineering, 2019, 7: 103336

[5]

RzaijJM, AbassAM. Journal of Chemical Reviews, 2020, 2: 114

[6]

NebattiA, PflitschC, EckertC, AtakanB. Progress in Organic Coatings, 2010, 67: 356

[7]

FujishimaA, RaoTN, TrykDA. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2000, 1: 1

[8]

HoffmannMR, MartinST, ChoiW, BahnemannDW. Chemical Reviews, 1995, 95: 69

[9]

CherrakR, HadjelM, BenderdoucheN, AdjdirM, MokhtarA, KhaldiK, SghierA, WeidlerPG. Silicon, 2019, 12: 927

[10]

TongH, OuyangS, BiY, UmezawaN, OshikiriM, YeJ. Advanced Materials, 2012, 24: 229

[11]

ZhaoW, BaiZ, RenA, GuoB, WuC. Applied Surface Science, 2010, 256: 3493

[12]

SeongSG, KimEJ, KimYS, LeeKE, HahnSH. Applied Surface Science, 2009, 256: 1

[13]

HaiderAJ, Al-AnbariRH, KadhimGR, SalameCT. Energy Procedia, 2017, 119: 332

[14]

LiJ-G, IkedaM, TangC, MoriyoshiY, HamanakaH, IshigakiT. The Journal of Physical Chemistry C, 2007, 111: 18018

[15]

Di PaolaA, BellarditaM, PalmisanoL. Catalysts, 2013, 3: 36

[16]

RasheedM, BarilléR. Journal of Non-Crystalline Solids, 2017, 476: 1

[17]

Abou-HelalM, SeeberW. Applied Surface Science, 2002, 195: 53

[18]

ChenZ, DündarI, AcikIO, MereA. In IOP Conference Series: Materials Science and Engineering, 2019, 503: 012006

[19]

ShindeV, GujarT, LokhandeC. Sensors and Actuators B: Chemical, 2007, 120: 551

[20]

MengL, WangZ, YangL, RenW, LiuW, ZhangZ, YangT, Dos SantosM. Applied Surface Science, 2019, 474: 211

[21]

Safranek W.H., The Properties of Electrodeposited Metals and Alloys: a Handbook, American Electroplaters and Surface Finishers Society, 1986.

[22]

Aliofkhazraei M. and Makhlouf A.S.H., Hand-book of Nanoelectrochemistry: Electrochemical Synthesis Methods, Properties, and Characteriz-ation Techniques, Springer, 2016.

[23]

El MoursliFC, DouayarA, HajjiF, NounehK, GuessousA, NabihK, HadriA, Abd-LefdilM. Sensors & Transducers, 2014, 27: 137

[24]

WangH, SongY, LiuW, YaoS, ZhangW. Materials Letters, 2013, 93: 319

[25]

GalD, HodesG, LincotD, SchockH-W. Thin Solid Films, 2000, 361: 79

[26]

KhanR, HassanMS, JangL-W, YunJH, AhnH-K, KhilM-S, LeeI-H. Ceramics International, 2014, 40: 14827

[27]

LajevardiS, ShahrabiT. Applied Surface Science, 2010, 256: 6775

[28]

WuM-S, CengZ-Z, ChenC-Y. Electro-chimica Acta, 2016, 191: 256

[29]

GyftouP, PavlatouE, SpyrellisN. Applied Surface Science, 2008, 254: 5910

[30]

AnH-J, JangS-R, VittalR, LeeJ, KimK-J. Electrochimica Acta, 2005, 50: 2713

[31]

HosonoE, FujiharaS, KakiuchiK, ImaiH. Journal of the American Chemical Society, 2004, 126: 7790

[32]

AlexanderL, KlugHP. Journal of Applied Physics, 1950, 21: 137

[33]

ThompsonCV. Annual Review of Materials Science, 2000, 30: 159

[34]

NajimJ, RozaiqJ. International Letters of Chemistry, Physics and Astronomy, 2013, 10: 137

[35]

SarkarA, GhoshS, ChaudhuriS, PalA. Thin Solid Films, 1991, 204: 255

[36]

ChakrabortyP, DattaG, GhatakK. Physica B: Condensed Matter, 2003, 339: 198

[37]

Samanta P., Saha A. and Kamilya T., Chemical Synthesis and Optical Properties of ZnO Nanoparticles, Журнал нано-та електронної фізики, 04015-04011–04015-04012, 2014.

[38]

JumaAO, AcikIO, MikliV, MereA, KrunksM. Thin Solid Films, 2015, 594: 287

[39]

Ghosh S. and Basu R.N., Nanoscale Characterization, In Noble Metal-Metal Oxide Hybrid Nanoparticles, Elsevier, 65 (2019).

[40]

FathyN, IchimuraM. Journal of Crystal Growth, 2006, 294: 191

[41]

FradeT, LobatoK, CarreiraJF, RodriguesJ, MonteiroT, GomesA. Materials & Design, 2016, 110: 18

[42]

Nezamzadeh-EjhiehA, MoazzeniN. Journal of Industrial and Engineering Chemistry, 2013, 19: 1433

[43]

LeeKM, LaiCW, NgaiKS, JuanJC. Water Research, 2016, 88: 428

[44]

KouJ, LuC, WangJ, ChenY, XuZ, VarmaRS. Chemical Reviews, 2017, 117: 1445

[45]

LakhdariM, HabelhamesF. Journal of Materials Science: Materials in Electronics, 2019, 30: 6107

[46]

AhmedS, RasulM, BrownR, HashibM. Journal of Environmental Management, 2011, 92: 311

[47]

LeelavathiA, MadrasG, RavishankarN. Physical Chemistry Chemical Physics, 2013, 15: 10795

[48]

LakhdariM, HabelhamesF, NessarkB, GirtanM, Derbal-HabakH, BonnassieuxY, TondelierD, NunziJM. The European Physical Journal Applied Physics, 2018, 84: 30102

AI Summary AI Mindmap
PDF

141

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/