Phonon transmission of vacancy disordered armchair silicene nanoribbon

Ashraful Hossain Howlader , Md. Sherajul Islam , Naim Ferdous

Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (8) : 454 -458.

PDF
Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (8) : 454 -458. DOI: 10.1007/s11801-021-0187-2
Article

Phonon transmission of vacancy disordered armchair silicene nanoribbon

Author information +
History +
PDF

Abstract

This work demonstrates the atomic vacancy effects on the phonon properties of armchair silicene nanoribbon in a step by step process for the first time. The phonon localization effect figures out the fact that vacancies cause to high-energy phonons become localized, whereas low-energy phonons can easily transmit. The vacancy reduces high-energy phonon transmission severely compared to low-energy phonon. It is also found from phonon density of states that high-frequency phonons soften towards the low-frequency region. The simulated phonon bandstructure verifies that most of the phonon branches transform to a nondegenerate state from a degenerate state and shifted toward a lower frequency regime due to the presence of vacancies. The overall consequences of atomic vacancies on the phonon thermal conductance disclose the reality that only a few atomic vacancies result in a vital reduction of phonon thermal conductance. In addition, the entropy of the disordered system is investigated.

Cite this article

Download citation ▾
Ashraful Hossain Howlader, Md. Sherajul Islam, Naim Ferdous. Phonon transmission of vacancy disordered armchair silicene nanoribbon. Optoelectronics Letters, 2021, 17(8): 454-458 DOI:10.1007/s11801-021-0187-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

SongY-L, ZhangY, ZhangJ-M, LuD-B. Applied Surface Science, 2010, 256: 6313

[2]

KangJ, WuF, LiJ. Appl. Phys. Lett., 2012, 100: 233122

[3]

PanL, LiuH J, TanX J, LvH Y, ShiJ, TangX F, ZhengG. Phys. Chem. Chem. Phys., 2012, 14: 13588

[4]

JingY, SunY, NiuH, ShenJ. Physica Status Solidi (b), 2013, 250: 1505

[5]

De PadovaP, KuboO, OlivieriB, QuaresimaC, NakayamaT, AonoM, Le LayG. Nano Lett., 2012, 12: 5500

[6]

WangY, ZhengJ, NiZ, FeiR, LiuQ, QuheR, XuC, ZhouJ, GaoZ, LuJ. Nano, 2012, 07: 1250037

[7]

LiH, WangL, LiuQ, ZhengJ, MeiW-N, GaoZ, ShiJ, LuJ. Eur. Phys. J. B, 2012, 85: 274

[8]

FahadM S, SrivastavaA, SharmaA K, MayberryC, MohsinK M. ECS Trans., 2016, 75: 175

[9]

AufrayB, KaraA, VizziniS, OughaddouH, LéandriC, EaletB, Le LayG. Appl. Phys. Lett., 2010, 96: 183102

[10]

Rachid TchalalaM, EnriquezH, MayneA J, KaraA, RothS, SillyM G, BendounanA, SirottiF, GreberT, AufrayB, DujardinG, Ait AliM, OughaddouH. Appl. Phys. Lett., 2013, 102: 083107

[11]

DingY, NiJ. Appl. Phys. Lett., 2009, 95: 083115

[12]

SongY-L, ZhangY, ZhangJ-M, LuD-B, XuK-W. Journal of Molecular Structure, 2011, 990: 75

[13]

MaL, ZhangJ-M, XuK-W, JiV. Physica B: Condensed Matter, 2013, 425: 66

[14]

DingY, WangY. Appl. Phys. Lett., 2014, 104: 083111

[15]

S. M. Aghaei and I. Calizo, in SoutheastCon 2015 (2015), pp. 1–6.

[16]

YaoY, LiuA, BaiJ, ZhangX, WangR. Nanoscale Research Letters, 2016, 11: 371

[17]

ZouD, ZhaoW, FangC, CuiB, LiuD. Phys. Chem. Chem. Phys., 2016, 18: 11513

[18]

AnR-L, WangX-F, VasilopoulosP, LiuY-S, ChenA-B, DongY-J, ZhaiM-X. J. Phys. Chem. C, 2014, 118: 21339

[19]

SadeghiH, SangtarashS, LambertC J. Scientific Reports, 2015, 5: 09514

[20]

YanJ-A, SteinR, SchaeferD M, WangX-Q, ChouM Y. Phys. Rev. B, 2013, 88: 121403

[21]

ScaliseE, HoussaM, PourtoisG, van den BroekB, Afanas’evV, StesmansA. Nano Res., 2013, 6: 19

[22]

CahangirovS, TopsakalM, AktürkE, ŞahinH, CiraciS. Phys. Rev. Lett., 2009, 102: 236804

[23]

ErhartP, AlbeK. Phys. Rev. B, 2005, 71: 035211

[24]

A. H. Howlader, M. S. Islam, and A. S. M. J. Islam, 21st International Conference of Computer and Information Technology (ICCIT), 1 (2018).

[25]

A. H. Howlader and M. S. Islam, Phonon Transmission of Vacancy Defected (10,0) Carbon Nanotube, 3rd International Conference on Electrical Information and Communication Technology (EICT), 1 (2017).

[26]

AnindyaK N, IslamM S, ParkJ, BhuiyanA G, HashimotoA. Current Applied Physics, 2020, 20: 572

[27]

IslamM S, HowladerA H, AnindyaK N, ZhengR, ParkJ, HashimotoA. Journal of Applied Physics, 2020, 128: 045108

[28]

AnindyaK N, IslamM S, HashimotoA, ParkJ. Carbon, 2020, 168: 22

[29]

S. Islam, A. G. Bhuiyan and A. Hashimoto, Realistic edge Shape Effects on The Vibrational Properties of Graphene Nanoribbons, 2nd International Conference on Electrical Information and Communication Technologies (EICT), 412 (2015).

[30]

IslamM S, UshidaK, TanakaS, HashimotoA. Computational Materials Science, 2013, 79: 356

[31]

IslamM S, UshidaK, TanakaS, HashimotoA. Diamond and Related Materials, 2013, 40: 115

[32]

IslamM S, UshidaK, TanakaS, MakinoT, HashimotoA. Computational Materials Science, 2014, 94: 225

[33]

IslamM S, UshidaK, TanakaS, MakinoT, HashimotoA. Computational Materials Science, 2014, 94: 35

[34]

IslamM S, TanakaS, HashimotoA. Carbon, 2014, 80: 146

[35]

HowladerA H, IslamM S, TanakaS, MakinoT, HashimotoA. Jpn. J. Appl. Phys., 2018, 57: 02CB08

[36]

IslamM S, AnindyaK N, BhuiyanA G, TanakaS, MakinoT, HashimotoA. Jpn. J. Appl. Phys., 2017, 57: 02CB04

[37]

LiH, ZhangR. EPL, 2012, 99: 36001

[38]

SevikC, SevinçliH, CunibertiG, ÇağınT. Nano Lett., 2011, 11: 4971

AI Summary AI Mindmap
PDF

149

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/