Gold nanoparticles film for Q-switched pulse generation in thulium doped fiber laser cavity

Ahmad H. A. Rosol, Afiq A. A. Jafry, Norrima Mokhtar, Moh Yasin, Sulaiman Wadi Harun

Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (8) : 449-453.

Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (8) : 449-453. DOI: 10.1007/s11801-021-0180-9
Article

Gold nanoparticles film for Q-switched pulse generation in thulium doped fiber laser cavity

Author information +
History +

Abstract

Passively Q-switched thulium doped fiber laser (TDFL) has been successfully demonstrated using gold nanoparticles (GNPs), which were embedded into polyvinyl alcohol as saturable absorber (SA). The stable self-starting Q-switched laser was generated to operate at 1 891 nm when a tiny piece of the prepared film was slot in between two fiber ferrules and incorporated into the laser cavity. The repetition rate can be adjusted from 48.54 kHz to 49.64 kHz while the pulse width decreased from 3.52 µs to 2.38 µs with the increase of 1 550 nm pump power from 840 mW to 930 mW. The corresponding pump power output power linearly increased from 3.62 mW to 6.3 mW with a slope efficiency of 2.53%. The maximum peak power and pulse energy were recorded at about 39 mW and 0.12 µJ, respectively at pump power of 930 mW. The Q-switching operation was caused by the surface plasmon resonance absorption of GNPs.

Cite this article

Download citation ▾
Ahmad H. A. Rosol, Afiq A. A. Jafry, Norrima Mokhtar, Moh Yasin, Sulaiman Wadi Harun. Gold nanoparticles film for Q-switched pulse generation in thulium doped fiber laser cavity. Optoelectronics Letters, 2021, 17(8): 449‒453 https://doi.org/10.1007/s11801-021-0180-9

References

[1]
NishizawaN. Japanese Journal of Applied Physics, 2014, 53: 090101
CrossRef Google scholar
[2]
ZhouY, ZhangR, ChenP, LiuY, FangY, WangT, LiX, KuanP, LiaoM. Laser Phys., 2019, 29: 055101
CrossRef Google scholar
[3]
WoodwardRI, HoweRCT, RuncornTH, HuG, TorrisiF, KelleherEJR, HasanT. Optics Express, 2015, 23: 20051
CrossRef Google scholar
[4]
Maciej Janeczek, Jacek Świderski, Albert Czerski, Bogusława Żywicka, Jolanta Bujok, Maria Szymonowicz, Ewa Bilewicz, Maciej Dobrzyński, Mariusz Korczyński, Aleksander Chrószcz and Zbigniew Rybak, Preliminary Evaluation of Thulium Doped Fiber Laser in Pig Model of Liver Surgery, BioMed Research International, 2018.
[5]
Z. Qu, Q. Li, H. Meng, X. Sui, H. Zhang and X. Zhai, Application and the Key Technology on High Power Fiber-Optic Laser in Laser Weapon, International Symposium on Optoelectronic Technology and Application 2014: International Society for Optics and Photonics, 92940C (2014).
[6]
MichalskaM, BrojekW, RybakZ, SznelewskiP, MamajekM, SwiderskiJ J L P L. Laser Phys. Lett., 2016, 13: 115101
CrossRef Google scholar
[7]
O. Traxer and E. X. Keller, Thulium Fiber Laser: the New Player for Kidney Stone Treatment? A Comparison with Holmium: YAG laser, World Journal of Urology, 1 (2019).
[8]
WangH-Y, XuW-C, LuoA-P, DongJ-L, CaoW-J, WangL-Y. Optics Communications, 2012, 285: 1905
CrossRef Google scholar
[9]
BaoQ, ZhangH, WangY, NiZ, YanY, ShenZ X, LohK P, TangD Y. Advanced Functional Materials, 2009, 19: 3077
CrossRef Google scholar
[10]
BuscemaM, GroenendijkD J, SteeleG A, Van Der ZantH S, Castellanos-GomezA. Nature Communication, 2014, 5: 1
CrossRef Google scholar
[11]
LuoZQ, ZhouM, WengJ, HuangGM, XuHY, YeCC, CaiZP. Optics Letters, 2010, 35: 3709
CrossRef Google scholar
[12]
Wood JoshuaD, Wells SpencerA, JariwalaD, ChenK-S, ChoE, Sangwan VinodK, LiuX, Lauhon LincolnJ, Marks TobinJ, Hersam MarkC. Nano Letters, 2014, 14: 6964
CrossRef Google scholar
[13]
SetS Y, YaguchiH, TanakaY, JablonskiM. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10: 137
CrossRef Google scholar
[14]
YanP, LinR, RuanS, LiuA, HaoC, ZhengY, ChenS, GuoC, HuJ. Scientific Report, 2015, 5: 8690
CrossRef Google scholar
[15]
WangK, WangJ, FanJ, LotyaM, O’NeillA, FoxD, FengY, ZhangX, JiangB, ZhaoQ. ACS Nano, 2013, 7: 9260
CrossRef Google scholar
[16]
TaoJ, YangX, QijunT, LaiL, ZheK. Applied Phys. Lett., 2012, 101: 151122
CrossRef Google scholar
[17]
Xu-DeW, Zhi-ChaoL, HaoL, NianZ, MengL, Yan-FangZ, Jian-PingX, Ai-PingL, Wen-ChengX. Opt. Commun., 2015, 346: 21
CrossRef Google scholar
[18]
GuoH, FengM, SongF, LiH, RenA, WeiX, LiY, XuX, TianJ. IEEE Photon. Technol. Lett., 2015, 28: 135
CrossRef Google scholar
[19]
MuhammadA R, AhmadM T, ZakariaR, RahimH R A, YusoffS F A Z, HamdanK S, YusofH H M, ArofH, HarunS W. Chinese Phys. Lett., 2017, 34: 034205
CrossRef Google scholar
[20]
GurudasU, BrooksE, BubbDM, HeirothS, LippertT. Journal of Applied Physics, 2008, 104: 073107
CrossRef Google scholar
[21]
NaM, TaoS, YangW, ChenQ, ZhangH. Optics Express, 2018, 26: 9017
CrossRef Google scholar
[22]
AhmadM, MuhammadA, ZakariaR, AhmadH, HarunS W. Optik, 2020, 207: 164455
CrossRef Google scholar
[23]
LiS, KangZ, LiN, JiaH, QinG. Optical Materials Express, 2019, 9: 2406
CrossRef Google scholar
[24]
LuoZ, HuangY, MinZ, LiY, WengJ. Journal of Lightwave Technology, 2014, 32: 4077
CrossRef Google scholar
[25]
LatiffA A, RusdiM F M, HisyamM B, AhmadH, HarunS W. Journal of Modern Optics, 2017, 64: 187
CrossRef Google scholar
[26]
WangM, HuangS, ZengY J, YangJ, PeiJ, RuanS. Optical Materials Express, 2019, 9: 4429
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/