Digital image biological detection technology based on the porous silicon periodic crystals film

Jianfeng Yang, Zhenhong Jia, Xiaoyi Lü, Xiaohui Huang, Jiajia Wang

Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (9) : 552-557.

Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (9) : 552-557. DOI: 10.1007/s11801-021-0176-5
Article

Digital image biological detection technology based on the porous silicon periodic crystals film

Author information +
History +

Abstract

In order to solve this problem, a new biological detection method is proposed, which makes use of the characteristics of optical transmission at the edge of the spectral band gap and sensitive to refractive index variation. When the probe light with wavelength at the edge of the Bragg band gap of porous silicon is incident on the surface of porous silicon, the change of refractive index caused by deoxyribonucleic acid (DNA) reaction in porous silicon will affect the detection light intensity transmitted from the porous silicon sensor. By analyzing the change of the average gray value of the transmitted light image, the concentration of the DNA can be obtained.

Cite this article

Download citation ▾
Jianfeng Yang, Zhenhong Jia, Xiaoyi Lü, Xiaohui Huang, Jiajia Wang. Digital image biological detection technology based on the porous silicon periodic crystals film. Optoelectronics Letters, 2021, 17(9): 552‒557 https://doi.org/10.1007/s11801-021-0176-5

References

[1]
PalestinoG, AgarwalV, AulombardR, PérezE, GergelyC. Langmuir, 2008, 24: 13765
CrossRef Google scholar
[2]
SoeriyadiA H, GuptaB, ReeceP J, GoodingJ J. Polymer Chemistry, 2014, 5: 2333
CrossRef Google scholar
[3]
CampbellS D. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 1995, 13: 1184
CrossRef Google scholar
[4]
IsaM I N M, ThamJ E, ChanK S. Malaysian Journal of Analytical Ences, 2011, 15: 227
[5]
ZhaoW R, ChenJ D, DingJ, ChenS J. Journal of Shantou University (Natural Science Edition), 2006, 21: 43
[6]
LevitskyI A, EulerW B, TokranovaN, RoseA. Applied Physics Letters, 2007, 90: 1781
CrossRef Google scholar
[7]
KrismastutiF S H, PaceS, VoelckerN H. Advanced Functional Materials, 2014, 24: 3639
CrossRef Google scholar
[8]
DimitrovD B, SavatinovaI, LiarokapisE. Opto-Electronics Review, 1998, 1998: 295
[9]
HuancaD R, RaimundoD S, SalcedoW J. Microelectronics Journal, 2009, 40: 744
CrossRef Google scholar
[10]
LiY, JiaZ, LvG, WenH, LiP, ZhangH, WangJ. Biomedical Optics Express, 2017, 8: 3458
CrossRef Google scholar
[11]
GuoZ, JiaZ, YangJ, NikolaK, LiC. Sensors, 2017, 17: 1335
CrossRef Google scholar
[12]
ZhangH, JiaZ, LvX, ZhouJ, MaJ. Biosensors & Bioelectronics, 2013, 44: 89
CrossRef Google scholar
[13]
LiP, JiaZ, G. Scientific Reports, 2017, 7: 44798
CrossRef Google scholar
[14]
LiC, JiaZ, LiP, WenH, LvG, HuangX. Sensors, 2017, 17: 750
CrossRef Google scholar
[15]
ZhangM, JiaZ, LvX, HuangX. IEEE Sensors Journal, 2020, 20: 12184
CrossRef Google scholar
[16]
OkazakiT, ImasakaT, IshibashiN. Analytica Chimica Acta, 1988, 209: 327
CrossRef Google scholar
[17]
Fernández-CarroblesM d M, BuenoG, DenizO, SalidoJ, Garcia-RojoM. IEEE Journal of Biomedical & Health Informatic, 2014, 18: 999
CrossRef Google scholar
[18]
SunJ. Microwave & Optical Technology Letters, 2002, 33: 240
CrossRef Google scholar
[19]
LiC I, JiaZ, HeL, HuangX H. Optoelectronics Letters, 2019, 15: 89
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/