Conduction cooled narrow linewidth sub-nanosecond multi-beam laser

Yong Cheng , Chaoyong Tan , Xu Liu , Xia Chen , Mengzhen Zhu , Jingsong Wei

Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (9) : 518 -522.

PDF
Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (9) : 518 -522. DOI: 10.1007/s11801-021-0167-6
Article

Conduction cooled narrow linewidth sub-nanosecond multi-beam laser

Author information +
History +
PDF

Abstract

A conduction cooled high peak power, narrow linewidth, and sub-nanosecond multi-beam laser as an excellent candidate for non-scanning lidar is demonstrated. This laser is based on master oscillator power amplifier (MOPA) scheme which consists of a pulse pumped Nd:YAG/Cr4+:YAG microchip laser as the master oscillator and a high efficient grazing incidence Nd:YVO4 slab amplifier, and the output beam is expanded to 100 mm diameter by a 50× low aberration Galileo beam expander and then divided into a 50×2 staggered arrangement multi-beam array by a diffractive laser splitter. The laser operates at 1 064.28 nm with a spectral linewidth about 20 pm, which generates 1 mJ, 0.78 ns pulses at 7 kHz rate. The fluctuation of output power is less than ±2% when it works continuously for 1 h. The energy uniformity of the 100 sub-beams is up to 90%, the divergence of each sub-beam is about 20 µrad, and the total transmission efficiency of the diffractive laser splitter is more than 85%.

Cite this article

Download citation ▾
Yong Cheng, Chaoyong Tan, Xu Liu, Xia Chen, Mengzhen Zhu, Jingsong Wei. Conduction cooled narrow linewidth sub-nanosecond multi-beam laser. Optoelectronics Letters, 2021, 17(9): 518-522 DOI:10.1007/s11801-021-0167-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

StephenM A, YuA W, KrainakM A. Proc. SPIE, 2011, 8154: 815406

[2]

YuA W, KrainakM A, HardingD J, BshireJ B, SunX. Proc. SPIE, 2013, 8599: 85990

[3]

McGillM, MarkusT, Stanley ScottV, NeumannT. Journal of Atmospheric and Oceanic Technology, 2013, 30: 345

[4]

YinX, JunqingM, JifengZ, WeibiaoC. Chinese Journal of Lasers, 2015, 42: 0902005 in Chinese)

[5]

Anthony W. Yu, Alexander Betin, Michael A. Krainak, Derek Hendry, Billie Hendry and Carlos Sotelo, Highly Efficient Yb:YAG Master Oscillator Power Amplifier Laser Transmitter for Future Space Flight Missions, 2012 Conference on Lasers and Electro-Optics, 2012.

[6]

AgnesiA, DallocchioP, PirzioF, RealiG. AppliedPhysics B, 2010, 98: 737

[7]

MorgenwegJ, EikemaK S E. Optical Letters, 2012, 37: 208

[8]

YoshinoT, SekiH, TokizaneY, MiyamotoK, OmatsuT. Journal of the Optical Society of America B, 2013, 30: 894

[9]

ZhenzhenY, XiaH, QunliZ, CuiyunZ, ZhijunW. Chinese Journal of Lasers, 2013, 40: 0602003 in Chinese)

[10]

SunZ, LiQ, HuiY, JiangM, LeiH. Proc. SPIE, 2014, 9449: 94491G

[11]

ChaoT, ShuangfuX, XiangZ, YongW, BinL, DongL, ZhenX, ZhibinY, ChongL. Chinese Journal of Lasers, 2017, 44: 1201003 in Chinese)

[12]

XuS, TangC, WangY, ZhengF, XiangZ, LiuD, ZhangX, YeZ, LiuC. Chinese Journal of Lasers, 2018, 45: 0101008 in Chinese)

[13]

YongLingH, MengHuaJ, HongL, QiangL. Applied Laser, 2019, 39: 490

[14]

Ramos-IzquierdoL, Stanley ScottVIII, ConnellyJ, SchmidtS, MamakosW, GuzekJ, PetersC, LiivaP, RodriguezM, CavanaughJ, RirisH. Applied Optics, 2009, 48: 3035

[15]

Shu Rong, Li Ming, Huang Genghua and Hou Libing, Design and Performance of a Fiber Array Coupled Multi-Channel Photon Counting, 3D imaging, Airborne Simulator for Lidar System, China High Resolution Earth Observation Conference, 2014.

[16]

MingL, JiaH, ChenglinZ, RongS. Infrared and Laser Engineering, 2017, 46: 0730001 in Chinese)

[17]

BoL, JuanyingZ, XiaolinS, ChangdongC, ZihengY, ZiyanW. Infrared and Laser Engineering, 2019, 48: 0606001 in Chinese)

[18]

SanbinC, ShouhuanZ, XiaojunT, YangL, LinaG. Infrared and Laser Engineering, 2010, 39: 97supplement

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/