Photonic generation of microwave arbitrary waveforms using stimulated Brillouin scattering and Sagnac loop

Xiang Li , Cong Du , Fangming Liu , Zhenguo Zhang , Wei Dong

Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (6) : 379 -384.

PDF
Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (6) : 379 -384. DOI: 10.1007/s11801-021-0155-x
Article

Photonic generation of microwave arbitrary waveforms using stimulated Brillouin scattering and Sagnac loop

Author information +
History +
PDF

Abstract

A photonic approach is proposed to generate microwave arbitrary waveforms based on the stimulated Brillouin scattering (SBS) effect and the Sagnac loop. The Sagnac loop is utilized to generate the optical signals of ±1st-order and ±3rd-order sidebands. Due to the principle of velocity adaptation, even order optical sidebands are suppressed. Thanks to the SBS effect, the microwave signal consisting of odd order harmonics is generated after the photodetector (PD), which can construct the triangular waveform, the square waveform, or the sawtooth waveform by adjusting the weight of the harmonics.

Cite this article

Download citation ▾
Xiang Li, Cong Du, Fangming Liu, Zhenguo Zhang, Wei Dong. Photonic generation of microwave arbitrary waveforms using stimulated Brillouin scattering and Sagnac loop. Optoelectronics Letters, 2021, 17(6): 379-384 DOI:10.1007/s11801-021-0155-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

YaoJ. Optics Communications, 2011, 284: 3723

[2]

R. S. Bhamber, A. I. Latkin, S. Boscolo and S. K. Turitsyn, All-optical TDM to WDM Signal Conversion and Partial Regeneration Using XPM with Triangular Pulses, Proc. 34th Eur. Conf. Opt. Commun., Brussels, Belgium, 1 (2008).

[3]

MckinneyJ D, LeairdD E, WeinerA M. Optics Letters, 2002, 27: 1345

[4]

KhanM H, ShenH, XuanY, ZhaoL, XiaoS, LeairdD E, WeinerA M, QiM. Nature Photonics, 2010, 4: 117

[5]

LeairdD E, WeinerA M. Optics Letters, 2004, 29: 1551

[6]

WuR, SupradeepaV R, LongC M, LeairdD E, WeinerA M. Optics Letters, 2010, 35: 3234

[7]

WangC, YaoJ. Journal of Lightwave Technology, 2010, 28: 1652

[8]

JiangY, MaC, BaiG, QiX, TangY, JiaZ, ZiY, HuangF, WuT. Optics Express, 2015, 23: 19442

[9]

ZhangJ, YaoJ. Journal of Lightwave Technology, 2016, 34: 5610

[10]

Guang-FuB, LinH, YangJ, JingT, Yue-JiaoZ, Ting-WeiW, Feng-QinH. Optics Communications, 2017, 396: 134

[11]

YuanJ, NingT, LiJ, PeiL, ZhengJ, LiY. Scientific Reports, 2018, 8: 3369

[12]

HeH, ShaoL Y, WangC, LuoB, ZouX, ZhangX, PanW, YanL. IEEE Photonics Technology Letters, 2018, 30: 943

[13]

ZhangK, ZhaoS, LiX, LinT, WangG. Optics Communications, 2019, 453: 124326

[14]

LiuW, WangM, YaoJ. Journal of Lightwave Technology, 2013, 31: 1636

[15]

GaoY, WenA, LiuL, TianS, XiangS, WangY. Journal of Lightwave Technology, 2015, 33: 2899

[16]

ChandraS, VardhananA V, GangopadhyayR. Iet Circuits Devices & Systems, 2008, 2: 123

[17]

LiuX, PanW, ZouX, ZhengD, YanL, LuoB, LuB. Journal of Lightwave Technology, 2014, 32: 3797

[18]

LiuW, YaoJ. Journal of Lightwave Technology, 2014, 32: 3637

[19]

LiW, WangWY, WangWT, LiuJG, ZhuNH. IEEE Photonics Journal, 2014, 6: 1

[20]

WangD, TangX, XiL, ZhangX, FanY. Optics & Laser Technology, 2019, 116: 7

[21]

DuC, WangY, WangD, LiQ, SunX, DongW, ZhangX. Optical and Quantum Electronics, 2019, 51: 25

[22]

YongchuanX, JingG, KuiW, WeiD, PengfeiQ. Optics Express, 2013, 21: 31740

[23]

Torres-CompanyV, LancisJ, Andr’esP, ChenL R. Journal of Lightwave Technology, 2008, 26: 2476

[24]

ZhaiW, WenA, ShanD. Journal of Lightwave Technology, 2019, 37: 1

[25]

ZhuS, LiM, WangX. Optics Letters, 2019, 44: 94

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/