A novel dual-lens-coupling system for DFB laser based on hybrid integration

Juan Wei , Yu Sun , Haiyun Xue , Huimin He , Siwei Sun , Fengman Liu , Liqiang Cao

Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (7) : 395 -399.

PDF
Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (7) : 395 -399. DOI: 10.1007/s11801-021-0143-1
Article

A novel dual-lens-coupling system for DFB laser based on hybrid integration

Author information +
History +
PDF

Abstract

A dual-lens-integrated distributed feedback (DFB) laser based on hybrid integration for single-mode transmitter optical subassembly (TOSAs) is discussed in this paper. The alignment and fixing of the lenses are simple to manipulate and highly accurate, making it possible to achieve high-efficient optical coupling to single-mode fiber (SMF) without additional high-precision tools and fixing equipment. The capability for a low coupling loss of less than 3 dB between the laser and fiber was demonstrated. The fabricated TOSA module has clear opening eyes with minor time jitters at a bit rate of 25 Gbit/s. This hybrid integration is a low fabrication cost, compact, and low insertion loss method to manufacture TOSA for a 200 or 400 GbE optical transceiver in a high-speed optical network.

Cite this article

Download citation ▾
Juan Wei, Yu Sun, Haiyun Xue, Huimin He, Siwei Sun, Fengman Liu, Liqiang Cao. A novel dual-lens-coupling system for DFB laser based on hybrid integration. Optoelectronics Letters, 2021, 17(7): 395-399 DOI:10.1007/s11801-021-0143-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ChengQ, BahadoriM, GlickM, RumleyS, BergmanK. Optica, 2018, 5: 1354

[2]

HouL, HajiM, AkbarJ, MarshJ H, Catrina BryceA. Optics Letters, 2011, 36: 4188

[3]

HiroshiA, KeitaM, TadashiM, MizukiS. IEICE Transactions on Electronics, 2019, E102-C: 324

[4]

OhyamaT, DoiY, KobayashiW, KanazawaS, TakahataK, KandaA, KurosakiT, TanakaT, OhnoT, SanjohH, HashimotoT. Journal of Lightwave Technology, 2016, 34: 1038

[5]

OhyamaT, DoiY, KobayashiW, KanazawaS, TanakaT, TakahataK, KandaA, KurosakiT, OhnoT, SanjohH, HashimotoT. IEEE Photonics Technology Letters, 2016, 28: 802

[6]

PezeshkiB, HeanueJ, TonD, SchransT, RangarajanS, ZouS, YoffeG W, LiuA, SherbackM, KubickyJ, LudwigP. Journal of Lightwave Technology, 2014, 32: 2796

[7]

AnJ-M, ZhangJ-S, WangL-L, ZhuK, SunB, LiY, HouJ, LiJ-G, WuY-D, WangY, YinX-J. Optical Engineering, 2018, 57: 1

[8]

GaoY, BolleC, LowY, PapazianR, CappuzzoM, KellerB, PardoF, EarnshaswM P. IEEE Photonics Technology Letters, 2016, 28: 2549

[9]

JiyaoX, WeibinR, DingS, LefengW, LiningS. Applied Optics, 2016, 55: 6947

[10]

JinhongJ, YongqiL, HuanzhuL, QiJ, KefeiZ. Laser Technology, 2019, 43: 655

[11]

LinC-H, LeiS-C, HsiehW-H, TsaiY-C, ChengW-H. Optics Express, 2017, 25: 24480

[12]

LimK-S, ParkH-J, KangH S, KimY S, JangJ-H. Optical Engineering, 2016, 55: 026107

[13]

OhyamaT, DoiY, KobayashiW, KanazawaS, HashimotoT. Journal of Lightwave Technology, 2016, 34: 1038

[14]

HoqueM-U, HasanM N, LeeY-C. Sensors and Actuators A: Physical, 2017, 254: 36

[15]

SuzukiT, AdachiK, TakeiA, TamuraK R, NakanishiA, NaoeK, OhtoshiT, NakaharaK, TanakaS, UomiK. Journal of Lightwave Technology, 2016, 34: 358

[16]

GaoY, BolleC, LowY, PapazianR, CappuzzoM, KellerB, PardoF, EarnshawM P. IEEE Photonics Technology Letters, 2016, 28: 2549

[17]

JunL, QingzhongH, JinsongX. IEEE Photonics Journal, 2019, 11: 1

AI Summary AI Mindmap
PDF

136

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/