A 2D quadrangular pyramid photoelectric autocollimator with extended angle measurement range

Konyakhin Igor , Renpu Li , Min Zhou , Dang Dinh Duan , Nikitin Mikhail , Guifu Huang , Jiawen Yang , Xin Tan

Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (8) : 468 -474.

PDF
Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (8) : 468 -474. DOI: 10.1007/s11801-021-0141-3
Invited Paper

A 2D quadrangular pyramid photoelectric autocollimator with extended angle measurement range

Author information +
History +
PDF

Abstract

A photoelectric autocollimator with high accuracy and extended measurement range based on the quadrangular pyramid is proposed, and the corresponding algorithms are also deduced. A new image processing algorithm has been proposed to improve the accuracy, and the corresponding errors are also estimated, the error does not exceed half a pixel when the distance between the marks more than two radii. The experimental results have verified that the measurement range of the proposed two-dimensional (2D) quadrangular pyramid photoelectric autocollimator can be increased

2
times than that of the flat mirror photoelectric autocollimator from 10′ to 15′. The accuracy is better than 1″ when the deflection is less than 15′.

Cite this article

Download citation ▾
Konyakhin Igor, Renpu Li, Min Zhou, Dang Dinh Duan, Nikitin Mikhail, Guifu Huang, Jiawen Yang, Xin Tan. A 2D quadrangular pyramid photoelectric autocollimator with extended angle measurement range. Optoelectronics Letters, 2021, 17(8): 468-474 DOI:10.1007/s11801-021-0141-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

TurgalievaT, KonyakhinI. Research of Autocollimating Angular Deformation Measurement System for Large-Size Objects Control. Proceedings of SPIE-The International Society for Optical Engineering, 2014, 8788: 878832

[2]

KonyakhinI, KopylovaT V, KonyakhinA I. Optic-Electronic Autocollimation Sensor for Measurement of the Three-Axis Angular Deformation of Industry Objects. Proceedings of SPIE-The International Society for Optical Engineering, 2012, 8439: 84391N

[3]

KonyakhinI, KopylovaT V, KonyakhinA I, SmekhovA A. Proceedings of SPIE-The International Society for Optical Engineering, 2013, 8759: 87593E

[4]

YoderP R, SchlesingerE R, ChickvaryJ L. Applied optics, 1975, 14: 1890

[5]

GaoM, DongZ R, BianZ L, YeQ, FangZ J, QuR H. Chinese Optics Letters, 2011, 9: 32

[6]

GeckelerR D, KřenP, JustA, SchumannM, KrauseM, LaceyI, YashchukV V. Review of Scientific Instruments, 2019, 90: 021705

[7]

LiR P, KonyakhinI, ZhangQ, CuiW, WenD D, ZouX H, GuoJ Q, LiuY. Optical Engineering, 2019, 58: 104112

[8]

IshikawaK, TakamuraT, XiaoM, TakahashiS, TakamasuK. Measurement Science & Technology, 2014, 25: 064008

[9]

LuoJ, WangZ, WenZ, LiM, LiuS, ShenC. Review of Scientific Instruments, 2018, 89: 015101

[10]

GaoW, OhnumaH, SatohH, ShimizuH, KiyonoS. CIRP Ann.-Manuf. Technol., 2004, 53: 425

[11]

IshikawaK, TakamuraT, XiaoM, TakahashiS, TakamasuK. Measurement Science & Technology, 2014, 25: 064008

[12]

ThompsonS J, LangR, ReesP, RobertsG W. Applied Optics, 2016, 55: 2827

[13]

ChenY L, ShimizuY, KudoY, ItoS, GaoW. Optics Express, 2016, 24: 15554

[14]

ChenY L, ShimizuY, TamadaJ, KudoY, MadokoroS, NakamuraK, GaoW. Optics Express, 2017, 25: 16725

[15]

LiR P, ZhouM, KonyakhinI, DiK, LiuY. Optics express, 2019, 27: 6389

[16]

KonyakhinI A, TurgalievaT V, LiR P. Proc. SPIE, 2014, 9141: 914123

[17]

DennisF. Vanderwerf, Applied Prismatic and Reflective Optics, 2010, Bellingham, Washington, SPIE: 303

[18]

LiebleinJ, KornG A, KornT M. Mathematics of Computation, 2000, 15: 421

[19]

PogarevG V, KiselevN G. Optical Adjustment Problems: A Reference Book, 1989, Leningrad, Mashinostroenie: 206

[20]

BallardD H. Pattern Recognition, 1981, 13: 111

[21]

LeandroA F. Pattern Recognition, 2008, 41: 299

[22]

GonzalezR C, WoodsR E, EddinsS L. Digital Image Processing Using Matlab, 2010, 21: 197

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/